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Abstract

This paper aims to estimate the relationship between transportation infrastructure
and deforestation in Brazil with conventional and spatial econometrics. In addition, we
propose an innovative methodology to access the predictive power of our estimations,
using machine learning algorithms based on supervised regression models. The ex-
ploratory analysis pointed to spatial concentration for cleared area and road network in
the Centro-Sul and Northeast regions of the country. Then, we assessed econometrically
that transportation infrastructure present a significant conditional correlation with defor-
estation even after controlling for important structural and institutional characteristics.
We also confirm the importance of spatial spillovers, interactions and unobservables
to understand forest clearings. From Machine Learning, the empirical evidences show
that spatial effects improve the models’ predictive power, helping to foresaw out of
sample deforestation. Finally, we argue that the combination of conventional and spatial
econometrics with statistical learning may help to design infrastructure projects that
mitigate potential environmental impacts.



1 Introduction

The Brazil holds an important part of the planet’s natural resources and biodiversity.

Nevertheless, deforestation in the country has caused concern worldwide due to greenhouse

gas emissions, species extinction and forest loss (Dasgupta 2021). The country has six biomes:

Amazon, Atlantic Forest, Caatinga, Cerrado, Pampa and Pantanal. The Amazon is the

largest tropical forest in the world while the Cerrado is the richest savannah. Although several

factors can explain deforestation in Brazil, we can highlight especially the agricultural frontier

expansion, which induces considerable land use changes and environmental degradation

(Bragança 2018; Barros and Stege 2019). The Amazon, for example, is the most active

agricultural frontier in the world in terms of forest loss and CO2 emissions (Assuncao,

Gandour, and Rocha 2015).

In general, one of the main drivers of this expansion is the development of the trans-

portation infrastructure, which attracts farmers to agricultural frontier regions, intensifying

population pressures on the natural environment. In fact, there is a close relationship between

migration and the opening of roads, which enable the creation of access corridors to previously

isolated regions, pushing the agricultural frontier further. In this sense, the transportation

infrastructure development is an important factor that indicates trends of environmental

change, since it facilitates and accelerates human access to natural resources (Pfaff et al. 2007;

Fearnside 2007; Vardei et al. 2014; Alphan 2017). To make matters worse, it is common

in Brazil that infrastructure projects have inadequate Environmental Impact Assessments

(EIA), both methodologically and in its enforcement.

Despite its importance, papers analyzing the impacts from the transportation infrastruc-

ture on the Brazilian deforestation are concentrated almost exclusively on the Legal Amazon

(Nepstad et al. 2001; Soares-Filho et al. 2004; Pfaff et al. 2007; Fearnside 2007; Walker

et al. 2013). In this context, this paper aims to contribute to the literature by estimating

the relationship between transportation network, especially of roads, and deforestation, in

addition to propose an innovative methodology to predict the impacts of transportation

1



infrastructure projects, using machine learning algorithms.

It is also worth mentioning that the literature has pointed to the impacts of agricultural

practices on deforestation in Brazil. In particular, we have activities related to cattle raising

and crops that have recently gained market value, such as soybeans, maize and sugarcane,

reflecting the increase in the national and international demand for beef, animal feed and

biodiesel (Godar, Tizado, and Pokorny 2012; Faria and Almeida 2016). In addition, spatial

interactions are a common effect when considering forest conversion and land use changes. In

fact, several papers point out that spatial spillovers are relevant to understand deforestation,

with a strong positive spatial interaction impacting negatively the environment (Igliori 2005;

Maddison 2006; Robalino and Pfaff 2012; Amin et al. 2019). Therefore, on a robustness

check, this papers also controls for confounding variables and spatial interactions since they

may change the relationship and improve the algorithms predictive power (Maddison 2006;

Igliori 2006; Choumert, Combes-Motel, and Dakpo 2013; Pfaff and Robalino 2017).

The paper is structured into four sections, including this introduction. In the second

section, we outline the theoretical framework on the relationship between infrastructure and

the environment. In the third section, we detail the methodology and the database. The

results and their analysis are in the fourth section, followed by the final considerations.

2 Theoretical Framework

The investments in infrastructure, in general, and the expansion of the transport network,

in particular, has the potential to generate economic growth and social development (De Paula

and Avellar 2008; Calderón and Serven 2010; Ferreira and Araújo 2006). Despite this, the

causal relationship between transportation investment and development is not direct, since, on

the one hand, economic growth creates additional incentives for investments in infrastructure

and, on the other, the accumulation and quality of infrastructure may impact the pace of

economic growth (Amann et al. 2016). In any case, it is undeniable that the infrastructure
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plays a central role in determining a country’s level of economic and social development.

For example, per capita income increases considerably with investments in infrastructure,

especially in transport, as it increases access to markets (Calderón and Serven 2010).

In fact, according to the CNT (National Confederation of Transport), in Brazil, trans-

portation and logistics directly contribute to regional development, to the generation of

jobs and income, in addition to improve the population’s living conditions. Despite this,

there are still many challenges to be overcome with regard to the supply and quality of

transport infrastructure in the country. The biggest one is the lack of investments, which

harms the entire Brazilian productive chain, in addition to inhibit the country’s economic

development (Bartholomeu and Caixeta Filho 2008).It is also worth mentioning that, among

the transportation modes, the road network has a preponderance on the Brazilian economy

due to its expressive participation in the country’s cargo and passenger transportation matrix,

which reaches 96 % of passengers and 60.5 % of goods (Projeto Infra-2038 2019).

To aggravate this scenario, transport infrastructure, in general, and road, in particular,

are usually associated with the significant negative environmental externalities, such as, for

example, the increase in greenhouse gas emissions, loss of biodiversity and deforestation

(Spellerberg 1998; Laurance, Goosem, and Laurance 2009; Jiang and Wu 2019). According to

the Welfare Economics Theory, ”externalities” are defined as a source of market inefficiency

and occur whenever production have an unintended positive or negative result on the well-

being of others (Coase 2013). It is in this sense that the increase in the supply of transport

infrastructure in a given region can induce not only significant economic and social gains,

but also important externalities, which must be adequately measured to determine the true

cost-benefit of investments (Pfaff 1999). For example, a better road infrastructure provides

lower CO2 emissions and greater energy efficiency, in addition to generating economic benefits

(Bartholomeu and Caixeta Filho 2008).

In fact, the expansion of the transportation infrastructure and the subsequent economic

development itself are, to a large extent, related to environmental problems, such as deforesta-
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tion and the emission of greenhouse gases. The reduction in transport costs, increases in the

economic scale and sectoral changes stimulate the demand for goods and services, expanding

the consumer market which, ultimately, creates significant environmental pressures, especially

in developing countries like Brazil. (Murshed et al. 2020).

In Brazil, the environmental concerns induced by transportation infrastructure has been

concentrated especially on the deforestation of primary forests. This is due to the significant

participation of forests in the Brazilian territory and the history of deforestation caused by

investments in infrastructure. In general, migration, unsustainable exploitation of forest

resources, land grabbing and speculation in land prices are important consequences of

the expansion in the transportation infrastructure that induce deforestation, especially in

agricultural frontier areas. (Pfaff 1999; Fearnside and De Alencastro Graça 2006; Fearnside

2007; Soares-Filho et al. 2004; Ferrante and Fearnside 2020).

Theoretically, the addition of new transport infrastructures increases the demand for

forest goods, such as wood and firewood, and for land, in addition to expanding the supply

of agricultural goods. These factors, in turn, create anthropic pressures on forest areas,

ultimately resulting in deforestation (Asher, Garg, and Novosad 2020). In general, the

deforestation process begins with the opening of roads that enable to remove noble wood,

allowing, later, the forest clearing into agriculture or pasture (Ferreira and Coelho 2015).

In practice, logging, especially in the Amazon region, begins with the opening of side roads

derived from a main road, forming the so-called “fish bone” (Paiva et al. 2020). Then, there

is the removal of noble wood, which open small voids inside the forest area. Subsequently,

trees of lesser value are extracted, contributing to the forest void, which, ultimately, reduces

the present value of the forest and creates additional incentives for the agricultural frontier

expansion. Finally, the area is often set on fire to clean the soil for later use in agriculture or

livestock (Souza et al. 2013; Barber et al. 2014; Lawrence and Vandecar 2015; Jusys 2016).

Therefore, the construction transportation infrastructure, the exploitation of wood and

the advance of the agricultural frontier bring about significant land use changes. To make
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matters worse, these factors, by increasing the expected economic benefits from deforestation,

create incentives for new migratory waves and additional investments in infrastructure, which

ultimately increase forest clearings (Fearnside 2005). It is worth noting that deforestation

is also affected by geographical and climatic conditions, especially due to its impacts on

the costs of building and maintaining transport infrastructure. For example, a high level

of precipitation can act to make runoff difficult and reduce the potential of agricultural

production, compressing the profitability margin, and acting as a barrier to deforestation

(Hargrave and Kis-Katos 2013).

Empirically, the literature confirms that there are large concentrations of deforestation

in the rays of the highways, which is aggravated in tropical areas, as shown some papers

for Congo, Jamaica and Indonesia (Newman, P., and Wilson 2014; Austin et al. 2018;

Kleinschroth et al. 2019). In Brazil, Nepstad et al. (2001) was one of the first to analyze the

relationship between deforestation and roads using satellite images. The evidences show that

forest areas are negatively correlated with road access. Also, according to Alves (2002), the

1990s deforestation occurred within a radius of 100km from the main roads and highways in

the Amazon andBarber et al. (2014) showed that 95 % of forest loss was located within a

radius of 5.5 km on roads and 1 km on rivers.

In this context, Fearnside (2005) argues that Brazil must combat the “unsustainable

development” induced by investments in infrastructure with environmental cost analysis,

reinforcing the need for reforms in the decision making process. The Brazilian Government’s

decision-making usually prioritizes the construction of highways, dams and large infrastructure

projects that, in turn, do not properly consider the direct and indirect negative environmental

impacts that they can generate. As emblematic examples, we can mention some Amazon’s

highways, such as BR-319 (Manaus-Porto Velho), BR-163 (Cuiabá-Santarém) and BR-364

(Cuiabá-Porto Velho) and the Belo Monte dam.

Therefore, the advancement of infrastructure, in general, and of transportation, in partic-

ular, despite being essential to the country’s economic development, especially in isolated
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and underdeveloped regions, can also generate important environmental impacts. In this

context, projects must undergo Environmental Impact Assessments (EIA), as they are the

best way to identify, prevent, mitigate and offset the negative effects of roads on biodiversity.

In this sense, the environmental impact assessment of an infrastructure project is important

to ensure economic development while minimizing possible environmental impacts (Reis and

Guzmán 2015).

Theoretically, environmental impact assessment (EIA) is a process of assessing the

environmental consequences of an important proposed action that significantly affects the

natural and artificial environment. This process has the ultimate goal of providing decision

makers with an indication of the probable consequences of their choices. EIA is, therefore,

an anticipatory, participatory environmental management tool, making negative externalities

more visible. Despite this, in practice, the laws that support environmental licensing in

Brazil are recent and of low effectiveness, especially due to the small contingent of agents

that carry out their inspection. In addition it suffers from the lack of clear objectives and

poor methodological quality. As a negative consequence of this scenario, we can mention the

environmental liabilities of many of the main Brazilian highways, especially those located in

regions with great environmental assets (Malafaia 2004; Sánchez 2013).

3 Methodology

3.1 Empirical Design and Database

To estimate the relationship between transportation infrastructure and deforestation in

Brazil, we propose to use data at the microregion-level covering the country’s 558 microregions.

Our outcome variable is the proportion of deforested area in the microregion, in 2017, from

the annual maps of land cover and land use released by MapBiomas, which uses images from

Landsat satellites with 30 meters pixel resolution. The initiative was formed in 2015 and

cover all the Brazilian biomes: Amazon (49.29%), Atlantic Forest (13.04%), Caatinga (9.92),
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Cerrado (23.92%), Pampa (2.07%) and Pantanal (1.76%). In addition, we also used vector

data in order to build specific variables and shapefiles to this empirical design. Specially,

we use infrastructure vector data, road and rail network, from the MapBiomas project, in

addition to microregions shapefile available in the Instituto de Geografia e Estat́ıstica (IBGE).

This paper also uses complementary vector databases in which we perform specific spatial

analysis and geoprocessing with Arcmap 10.7 software. First, we employ a Polygon Overlay,

particularly the Spatial joint tool, to overlap the infrastructure and microregions vectors

data to measure the extension (in kilometers) of the Brazilian transportation network at the

microregion-level. Then, we weight each measure by the microregion area in order to obtain

comparable informations for all regions.

In addition to the variables directly linked to the transportation infrastructure in Brazil,

we also consider some geographic, agricultural and structural variables for control purpose,

due to their importance indicated by the literature. The inclusion of control variables aims to

improve the model specification and avoid spurious regressions and omitted variable problem,

as well as better represent structurally the region and explain deforestation in Brazil. In other

words, additional exploratory variables may help to establish the relationship and predict is

impacts on deforestation. Among them, we construct variables specifically to this empirical

design: Rainfall, Soil, River, Protected Area. We constructed the controls variables using the

spatial joint tool. Some explanations about these variables are worth mentioning.

We construct the Soil variable using the Mapa de Potencial Agŕıcola do Brasil, complied

by the Instituto Brasileiro de Geografia e Estat́ıstica (IBGE) and made available by the

Ministério do Meio Ambiente (MMA). The Brazilian territory are classified according to

the agricultural potential of its soils, considering factors such as: fertility, physical and

morphological characteristics, main limitations and topography. Merging the agricultural

potential map with the Brazil map, we identified the predominant type of soil that exists in

the microregions. Finally, we calculated a weighted average with higher weights for more

suitable soils, which resulted in an indicator that the closer to one, the greater is suitability.
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This procedure seeks to control for the fact that the impact of transportation infrastructure

conditional on soil suitability can change since regions with higher agricultural potential may

attract migratory waves, lead to further agricultural frontier expansion and deforestation

which increase demand for infrastructure. In an indirect way, it will be possible to identify if

microregions with greater agricultural potential soils have deeper changes in land use.

The Protected Area data vector was made available by the Centro de Sensoriamento

Remoto da Universidade Federal de Minas Gerais (CSR-UFMG).The Rainfall is composed

of average annual precipitation data (1977 to 2006), from the national hydrometeorological

network, compiled by the Serviço Geológico do Brasil (CPRM) and made available by the

Pluviometric Atlas of Brazil. It is worth mentioning that we check for correlations between

the variables and noticed high correlations that could compromise the estimation.

Finally, we also consider social, economic, technology and additional geographic variables

that may improve the estimations. From IBGE, we have the demographic density, Gini

Index, GDP, Rural GDP (proportion), Property Area (average), pasture and planted area

(proportion), Human Capital (average years of schooling), Property Rights. We also construct

an agricultural technology index with Principal Component Analysis (PCA) using several

dimensions of technological access and adoption on agricultural properties: (1) - tractors; (2)

- seeders; (3) - limestone and fertilizer distributors; (4) - harvesters; (5) - technical assistance;

(6) - irrigation; (7) - fertilization; (8) - soil preparation; (9) - electricity; (10) - limestone; (11)

- pesticides; (12) - animal feed.

In addition, the forest conversion and land use changes may present spatial interactions

that result in significant spillovers, influencing the economic agent decision. This spatial

spillover may occur due to the presence of centripetal forces, generated by productivity

difference and transport costs that can cause significant regional differences; attracting

productive activities, especially agricultural and livestock (Maddison, 2006; Wenhold and

Reis, 2008; Robalino and Pfaff, 2012). In other words, the presence of spatial spillovers

may be one important factor inducing the economic agents to push the agricultural frontier
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expansion and the demand for transport infrastructure, resulting in deforestation, which

highlight the need for its proper control. Therefore, the baseline model estimated is

Deforesti = β0 + ρWDeforesti + β1Roadi + β2Raili + β3Riversi + βkZi + τWS + εi (1)

where Deforesti is the percentage of the microregion that was cleared; Z is the matrix of

k additional explanatory variables included in the model; S is a control vector containing

variables that represents the agricultural frontier expansion, geography and climate. The

spatial dependence matrix W , which represents the structural neighborhood between the

regions, capture the presence of spatial spillovers in the variables.

3.2 Exploratory Spatial Data Analysis (ESDA)

The ESDA capture effects of spatial dependence and heterogeneity, association patterns

(spatial clusters) and indicate how the data are distributed. The Moran’s I seeks to capture

the degree of spatial correlation between a variable across regions. Mathematically,

I =
n

So

∑
i

∑
j wijzizj∑n
i=1 z

2
i

(2)

where n is the number of regions, S0 is a value equal to the sum of all elements of matrix

W , z is the normalized value for deforestation. However, the Moran’s I statistic can only

capture global autocorrelation, not identifying association at a local level. In this context, we

use the LISA statistic, which capture local spatial autocorrelation and clusters,

Ii = zi
J∑
j=1

wijzj (3)

where zi represents the variable of interest of the standardized region i, wij is the spatial

weighting matrix element (W ) and zj is the value of the variable of interest in the standardized
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region j. The local Moran I (LISA) can represent four spatial clusters: High-High (AA),

Low-Low (BB), High-Low (AB) and Low-High (BA).

3.3 Spatial Econometrics

In an econometric model, it is possible to incorporate the spatial component through

spatially lagged variables. In this paper, we propose to estimate three spatial models: Spatial

Autoregressive Model (SAR), Spatial Lag Model (SLX) and Spatial Durbin Model (SDM).

The Spatial Autoregressive Model (SAR), which incorporates the the spatial lag of the

dependent variable, is

y = ρWy +Xβ + µ+ ε (4)

where W is the spatial weighted matrix n× n; a vector n× 1 of the dependent variable, y;

X is a matrix n× k of the regressors and µ is the intercept. The basics hypothesis of the

SAR model are εi N(0, σ2
ε ) and E (εiεj) = 0 for i 6= j. The Spatial Lag Model (SLX), on the

other hand, include includes spatial lags of explanatory variables,

y = Xβ +WZtθ + µ+ ε (5)

where it is possible that Z 6= X. Finally, the Spatial Durbin Model (SDM) is a generalization

from the SAR and SLX models with independent and dependent variables spatially lagged as

explanatory variables,

y = ρWy +Xβ +WZtθ + µ+ ε (6)

To estimate the spatial models with endogenous interactions (SAR and SDM), we propose

to use an two-stage estimation with instrumental variable, using the exogenous lagged

explanatory variables WX for SAR and W 2X for SDM. The SLX model, on the other hand,

can be estimated by Ordinary Least Squares since the lagged explanatory variables WX are
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exogenous.

3.4 Machine Learning

The main goal of Machine Learning is to construct a statistical model to predict some

outcome of interest. In fact, statistical models are the basis of Machine Learning algorithms;

specially regression, classification and mixed models 1. Differently from standard statistics,

that focus on asymptotic theory and casual relationships, the artificial intelligence literature

focus on the model’s predictive power. In practice, there are two basic algorithms types in

the Machine Learning literature, the supervised and unsupervised models. The first is scored

based on a known quantity while the later estimate patterns from the data.

In this paper, we use algorithms based on supervised regression models since they are

the most common in the Machine Learning literature. In addition, regression models are

also widely used in the deforestation literature to access conditional correlations and casual

relationship between variables. Therefore, by using supervised algorithms based on regression

models, we can combine our approaches to access the predictive power of the spatial models.

To implement such approach, the first step is to train the model to minimize its forecast

error and avoid overfitting. In practice, we need to split our data sample in two: one for

training and another for testing. In other words, this procedures seeks to test the validity

of our model by using the testing sample to access the predictive power of the estimated

model. To minimize potential bias, it is important to use sampling techniques to construct

the samples. Next, we need to compare the predicted results calculated with the training

sample with the actual values from the testing sample. To access the model’s predictive

power, it is important to use some test metric. In this paper, we use the root-mean-square

error (RMSE),

RMSE =
√

(
1

n
Σ (ypredicted − yactual)2

)
(7)

1. See (Burger 2018) for additional information
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where ypredicted is the predicted deforestation, from the trained model, using the actual value

from the testing sample; yactual is the actual value from the testing sample; n is the number of

observations in the testing sample. In general, a lower RMSE is better than a higher one. In

other words, we can access the best model specification and, therefore, test if some variables

of interest help to improve the predictive power of the model. In this paper, we test if the

transportation variables and the spatial interactions from deforestation help to improve the

predictions.

To check the robustness of the results, we use a k-fold cross validation method to ensure

that the testing data represents in fact our data sample. This technique splits the data

sample in k chunks and create, for each chunk, a training and testing sample and estimate

the model. Then, it takes the average of the k predicted errors from each chunk. In other

words, the k-fold cross validation enables to access the potential degree of variation in the

RMSE and minimize it by averaging the errors.

4 Results and Discussion

Deforestation in Brazil has significant negative impacts on the environment, affecting

adjacent localities and potentially global climatic stability. Therefore, the search for its

determinants is fundamental in the development of inhibitory and mitigation measures, espe-

cially considering the transportation infrastructure expansion that allows access to previously

isolated areas, affecting the clearings rhythm. The Figure 1 shows the spatial distribution

of deforested area (a) and road network density 2 (b) in Brazil and we can note a spatial

concentration for both variables in the country. Deforestation and road density are both

concentrated in the Centro-Sul and Northeast, which may indicate a close relationship be-

tween the variables. According to Freitas et al. (2010), this spatial configuration reflects the

Brazilian colonization and occupation process that occurred more intensely in Southeast and

2. We focus our exploratory analysis on the road network due to its central role in the transportation
infrastructure in the country
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Northeast.

Figure 1: Spatial Distribution of deforested area (a) and road network density (b) in Brazil.

Theoretically, the spatial concentration of deforestation may result from spatial inter-

actions, which can reinforce it. This phenomenon are also evidenced by several empirical

papers (Igliori 2006; Pfaff et al. 2007; Pfaff and Robalino 2017; Jusys 2016; Barros and Stege

2019; Amin et al. 2019) Figure 2 confirms this spatial phenomenon for deforestation and road

network in Brazil, with similar spatial configuration from Figure 1. We have a High-High

cluster for both variables in the Centro-Sul and Northeast along with a Low-Low cluster in

the North.
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Figure 2: LISA Map for Deforestation and Road Density in Brazil.

With the deforestation basic characteristics identified, in terms of its spatial distribution,

the next step is to find its potential determinants. Table 1 presents the Ordinary Least

Squares estimations. In the column (1), we estimate the relationship between transportation

infrastructure and deforestation in Brazil. In general, the road and rail network presented a

positive and statistically significant coefficient, highlighting a positive correlation of trans-

portation network and forest clearings in the country, explaining approximately 13.3% of the

variation in the cleared area.

To check the robustness of our results, we include control variables in column (2) to column

(6) that proxy characteristics related to social, economic, agricultural, market structure,

technology, climate geography, human capital and institutions. It is worth mentioning

that our benchmark model in column (6) explained approximately 75% of the variation

in deforestation. Despite the reduction in the road and rail network coefficients as we

include control variables in the estimations, they remain statistically significant, highlighting
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a consistent conditional correlation with clearings. In addition, the river variable turned

statistically significant after conditioning its correlation to control variables.

Table 1: Ordinary Least Squares

Dependent variable:

Deforestation
OLS OLS OLS OLS OLS OLS

(1) (2) (3) (4) (5) (6)

Roads 1.3267∗∗∗ 0.9433∗∗∗ 0.8145∗∗∗ 0.4621∗∗ 0.5571∗∗∗ 0.5762∗∗∗

(0.2056) (0.1763) (0.1730) (0.2257) (0.1936) (0.1861)
Rail 1.0413∗ 0.7584∗ 0.7778∗ 0.6528∗ 0.4554 0.5173∗

(0.5492) (0.4425) (0.4427) (0.3502) (0.3102) (0.2989)
Rivers −0.0627 −0.0874 −0.0794 −0.0564 −0.0875∗ −0.1095∗∗

(0.0639) (0.0547) (0.0557) (0.0591) (0.0531) (0.0511)
GDP 0.00001∗∗∗ 0.00001∗∗∗ 0.000000 0.000003 0.00001∗∗

(0.000003) (0.000003) (0.000002) (0.000003) (0.000003)
GDP² −0.0000∗∗∗ −0.0000∗∗∗ 0.0000 −0.0000 −0.0000

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Population −0.00004∗∗ −0.00005∗∗ 0.0001∗∗∗ 0.0001∗∗∗ 0.0001∗∗∗

(0.00002) (0.00002) (0.00002) (0.00002) (0.00002)
Rural GDP 0.0024∗∗∗ 0.0022∗∗ −0.0020∗∗∗ −0.0008 −0.0011

(0.0009) (0.0009) (0.0006) (0.0007) (0.0007)
GINI −2.3370∗∗∗ −2.2422∗∗∗ −1.0142∗∗∗ −0.5189∗∗∗ −0.7587∗∗∗

(0.1977) (0.2043) (0.1635) (0.1625) (0.1733)
Openness Trade −0.1587∗∗∗ −0.0471 −0.0563∗ −0.0639∗∗

(0.0482) (0.0307) (0.0291) (0.0268)
Property Area −0.0001 −0.0002∗∗∗ −0.0001∗∗∗ −0.0001∗∗∗

(0.00004) (0.00003) (0.00003) (0.00003)
Pasture 0.0085∗∗∗ 0.0081∗∗∗ 0.0080∗∗∗

(0.0005) (0.0005) (0.0005)
Planted Area 0.0058∗∗∗ 0.0055∗∗∗ 0.0065∗∗∗

(0.0004) (0.0004) (0.0004)
Soil 0.0631 0.0717∗ 0.0494

(0.0397) (0.0379) (0.0392)
Technology −0.0950 −0.1599 −0.0979

(0.1098) (0.1165) (0.1112)
Altitude 0.00005 0.0001∗∗

(0.00003) (0.00003)
Precipitation −0.00005∗∗∗ −0.0001∗∗∗

(0.00002) (0.00002)
Temperature 0.0185∗∗∗ 0.0180∗∗∗

(0.0029) (0.0029)
Human Capital −0.0287∗∗

(0.0130)
Property Rights −0.00004

(0.00002)
Environm. Fines 0.0001

(0.0001)
Rural Credit −0.0040∗∗∗

(0.0010)
Protected Areas 0.1608∗∗

(0.0636)
Constant 0.4237∗∗∗ 1.5202∗∗∗ 1.4683∗∗∗ 0.7624∗∗∗ 0.1360 0.4051∗∗∗

(0.0458) (0.1196) (0.1393) (0.1180) (0.1320) (0.1470)

Observations 558 558 558 558 558 558

R2 0.1380 0.4305 0.4446 0.7041 0.7365 0.7517

Adjusted R2 0.1334 0.4222 0.4345 0.6965 0.7282 0.7415
Akaike (AIC) 41.9273 -179.3092 -189.3449 -532.6709 -591.4604 -614.6085
Moran I 0.7856*** 0.7348*** 0.6860*** 0.6909*** 0.6289*** 0.6182***

Note: *** Significant at 1%; ** Significant at 5%; * Significant at 10%. Robust Standard Errors.

We further check the robustness of our results by considering potential endogeneity

problems. Table A1 (in the Appendix) presents a endogeneity test3 for all estimation of Table

1. In general, the variables are statistically insignificant, highlighting no endogeneity concerns.

3. We estimate an Ordinary Least Square of all variables on the model’s residuals from Table 1 to test for
potential endogeneity problems
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Despite this, our results, by not using an exogenous source of variation for transportation

infrastructure, do not allow for casual interpretation due to possible observable confounders.

However, one possible explanation for our empirical evidence is that the transportation

infrastructure allows access to previously isolated areas by creating corridors to the region,

reducing transportation costs and pushing the agricultural frontier further by intensifying

the migration and occupation of the territory, leading to deforestation (Pfaff et al. 2007;

Bragança 2018; Araújo et al. 2019).

However, spatial interactions and spillovers can affect deforestation decisions and, in addi-

tion, unobservables variables that is related to transportation infrastructure and deforestation

may be spatially correlated. In fact, the Moran I test, calculated in each model specification

(Table 1), confirm that the residuals are spatially autocorrelated. Therefore, consider spatial

interactions from deforestation in the estimations may improve the results, specially in its

predictive capability. To measure such spatial effects, we must consider the endogenous nature

of the problem. To overcome these caveat, we instrumentalized neighborhood deforestation

using neighbors’ exogenous characteristics as reported in Section 3.3. To include the spatial

effects, we considered out benchmark model (column (6)), which presented the lowest Akaike

information criterion and highest adjusted R2.

Table 2 presents the results for our OLS benchmark model and the SLX, SAR and SDM

spatial models. The ρ coefficients that captures the spatial interaction from deforestation are

significant for both SAR and SDM models, highlighting the importance of spatial spillovers

in forest conversion and land use changes. Although we can not decompose the channels

that the interactions and spillovers operate, its control captures spatially unobservables and

potential impacts from input reallocation, leakages, market prices, technology learning and

social interactions (Igliori 2006; Pfaff et al. 2007; Robalino and Pfaff 2012; Assuncao, Gandour,

and Rocha 2015; Pfaff and Robalino 2017; Barros and Stege 2019; Amin et al. 2019). The

road and rail network coefficients turned statistically insignificant after controlling for spatial

interactions and spillovers. One possible explanation for this empirical evidence is that both
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transportation variables are spatially correlated. Therefore, by controlling for spatially unob-

servables characteristics, the estimations no longer could decompose a statistically significant

conditional correlation for the road and rail variables. This fact, however, does not mean that

transportation infrastructure are not important to explain deforestation; it just highlight for

its potentially spatial nature, which prompts for further investigations.

Table 2: Spatial Models

Dependent variable:

Deforestation
OLS SLX SAR SDM

(1) (2) (3) (4)

Roads 0.5762∗∗∗ 0.2951 0.1471 0.1411
(0.1861) (0.2216) (0.1535) (0.1535)

Rail 0.5173∗ 0.2964 0.2255 0.1522
(0.2989) (0.3277) (0.2578) (0.2578)

Rivers −0.1095∗∗ −0.1205∗∗ −0.0791∗ −0.1133∗∗∗

(0.0511) (0.0593) (0.0423) (0.0423)
WRoads 0.4205∗ −0.0896

(0.2396) (0.1691)
WRail 0.7629 0.3565

(0.4768) (0.3161)
WRivers 0.0309 0.0886∗

(0.0717) (0.0519)
WDeforest (ρ) 0.6729∗∗∗ 0.6693∗∗∗

(0.0334) (0.0334)
Constant 0.4051∗∗∗ 0.3143∗∗ 0.3143∗∗∗ 0.2528∗∗

(0.1470) (0.1488) (0.1175) (0.1175)

Controls Yes Yes Yes Yes

Observations 558 558 558 558
R2 0.7517 0.7584 0.8722 0.8736
Adjusted R2 0.7415 0.7471 0.8667 0.8675
Akaike (AIC) -614.6085 -623.9024 -982.9881 -983.477
Moran I 0.6182*** 0.5991*** -0.0129 -0.0121

Note: *** Significant at 1%; ** Significant at 5%; * Significant at 10%. Robust Standard Errors.
Column (1) to (4) include all control variables from Table 1, column (6).
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Finally, we propose an innovative approach, using Machine Learning techniques, to access

the predictive power of our estimations. In other words, we check if the estimated models

can be used to predict the impacts of infrastructure projects since most of Environmental

Impact Assessments (EIA) are inadequate to foresaw potential environmental impacts. In

practice, we used Machine Learning algorithms based on supervised regression models; the

results are presented in Table 3.

Table 3: Accessing the model’s predictive power with Machine Learning algorithms

Dependent variable: Deforestation

OLS SLX SAR SDM

(1) (2) (3) (4)

RMSE (global) 0.1311 0.1296 0.0904 0.0964

k-fold Cross Validation: 10 chunks
RMSE (1) 0.1952 0.1873 0.1138 0.1118
RMSE (2) 0.1915 0.1887 0.1203 0.1185
RMSE (3) 0.1677 0.1765 0.1185 0.1261
RMSE (4) 0.1479 0.1394 0.1041 0.1010
RMSE (5) 0.1255 0.1280 0.0899 0.0900
RMSE (6) 0.1297 0.1283 0.0806 0.0810
RMSE (7) 0.0974 0.1000 0.0825 0.0810
RMSE (8) 0.1794 0.1943 0.1039 0.1018
RMSE (9) 0.2089 0.2122 0.1394 0.1382
RMSE (10) 0.1964 0.2000 0.1194 0.1258

Average RMSE 0.1640 0.1655 0.1072 0.1075

Note: Column (1) to (4) include all control variables from Table 1, column (6).

The SAR spatial model presented the lowest root-mean squared error (RMSE), both in

the global estimation and in the k-fold cross validation with 10 chunks; despite the fact that

the SDM spatial model presented the highest Adjusted R2 and the lowest Akaike information

criterion and Moran I in the residuals. Therefore, the Machine Learning algorithms allowed

18



to access the best predictive model going beyond simple statistical adjustment measures. In

practice, this empirical approach may help design infrastructure projects by construing better

Environmental Impact Assessments (EIA) that foresaw potential environmental impacts.

5 Final Considerations

This paper investigated the relationship between transportation infrastructure and defor-

estation in Brazil. The exploratory analysis pointed to spatial concentration of deforestation

and road network, with both of its high values concentrated in the Centro-Sul and Northeast,

indicating a close spatial relationship between the variables. This spatial configuration may

reflects the Brazilian colonization and occupation process that occurred more intensely in

those regions, and the significant correlation between this process and the construction of a

transportation infrastructure.

Then, we assessed empirically the relationship with models using Ordinary Least Squares

(OLS) and spatial econometric techniques, respectively. In the OLS estimations, the trans-

portation infrastructure presented a statistically significant conditional correlation with

deforestation even after including important structural and institutional controls. On the

other hand, with the spatial models, we confirmed the importance of spatial spillovers,

interactions and unobservables to understand forest clearings. However, after controlling for

this spatial effects, the coefficients from transportation infrastructure turned statistically

insignificant, possibly highlighting the spatial nature of transport network, which prompts

for further investigations.

Finally, we propose an innovative approach, using Machine Learning algorithms based

on supervised regression models, to access the predictive power of our estimations. The

empirical evidences show that considering spatial interactions, spillovers and unobservables

from deforestation improve the models’ predictive power. Therefore, in addition to the direct

contribution to the literature from considering the spatial relationship between transportation
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infrastructure and deforestation in Brazil, this approach may also help to design infrastructure

projects since most of Environmental Impact Assessments (EIA) are inadequate to foresaw

potential environmental impacts.
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Revista de Economia e Sociologia Rural.
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Projeto Infra-2038. 2019. Relatório Infra (19): Acompanhamento do avanço da Infraestrutura

no Brasil.

Reis, E. J., and R. M. Guzmán. 2015. “An Econometric Model of Amazon Deforestation.”

Robalino, J. A., and A. Pfaff. 2012. “Contagious development: Neighbor interactions in

deforestation.” Journal of Development Economics.

24



Sánchez, L. 2013. Avaliação de Impacto Ambiental: Conceitos e Métodos, 2a. edição. 583.

Soares-Filho, B., A. Alencar, D. Nepstad, G. Cerqueira, M. C. Vera Diaz, S. Rivero, L.
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Table A1: Endogeneity Test

Dependent variable:

Resid Resid Resid Resid Resid Resid Resid Resid

(1) (2) (3) (4) (5) (6) (7) (8)

Roads 0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 −0.0000 −0.0000
(0.1633) (0.1930) (0.2056) (0.1684) (0.1730) (0.2257) (0.1936) (0.1861)

Rail −0.0000 0.0000 −0.0000 −0.0000 0.0000 0.0000 0.0000
(0.5528) (0.5492) (0.4530) (0.4427) (0.3502) (0.3102) (0.2989)

Rivers 0.0000 −0.0000 0.0000 −0.0000 0.0000 0.0000
(0.0639) (0.0559) (0.0557) (0.0591) (0.0531) (0.0511)

GDP −0.0000 0.0000 −0.0000 −0.0000 −0.0000
(0.000003) (0.000003) (0.000002) (0.000003) (0.000003)

GDP² −0.0000 −0.0000 0.0000 0.0000 0.0000
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Demographic Density 0.0000 0.0000 0.0000 −0.0000 −0.0000
(0.00002) (0.00002) (0.00002) (0.00002) (0.00002)

Rural GDP 0.0000 −0.0000 0.0000 0.0000 0.0000
(0.0009) (0.0009) (0.0006) (0.0007) (0.0007)

GINI 0.0000 −0.0000 −0.0000 −0.0000 −0.0000
(0.2134) (0.2043) (0.1635) (0.1625) (0.1733)

Openness to Trade −0.0000 0.0000 0.0000 0.0000
(0.0482) (0.0307) (0.0291) (0.0268)

Property Area −0.0000 0.0000 −0.0000 −0.0000
(0.00004) (0.00003) (0.00003) (0.00003)

Pasture 0.0000 0.0000 0.0000
(0.0005) (0.0005) (0.0005)

Planted Area −0.0000 0.0000 0.0000
(0.0004) (0.0004) (0.0004)

Soil −0.0000 −0.0000 −0.0000
(0.0397) (0.0379) (0.0392)

Technology −0.0000 0.0000 −0.0000
(0.1098) (0.1165) (0.1112)

Altitude −0.0000 0.0000
(0.00003) (0.00003)

Precipitation 0.0000 −0.0000
(0.00002) (0.00002)

Temperature 0.0000 −0.0000
(0.0029) (0.0029)

Human Capital 0.0000
(0.0130)

Property Rights −0.0000
(0.00002)

Environmental Fines 0.0000
(0.0001)

Rural Credit −0.0000
(0.0010)

Protected Areas −0.0000
(0.0636)

Constant −0.0000 −0.0000 −0.0000 −0.0000 0.0000 0.0000 0.0000 0.0000
(0.0205) (0.0209) (0.0458) (0.1450) (0.1393) (0.1180) (0.1320) (0.1470)

Observations 558 558 558 558 558 558 558 558

R2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Adjusted R2 -0.0018 -0.0036 -0.0054 -0.0146 -0.0183 -0.0258 -0.0315 -0.0411

Note: *** Significant at 1%; ** Significant at 5%; * Significant at 10%. Robust Standard Errors.
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############ Pacotes e Diretório ############

#Definir Diretório
getwd()
setwd("C:/Users/Public/R/Rodovia")

## Pacotes
library(readxl) # para ler arquivos excel
library(sf) # para trabalhar com dados georreferenciados
library(ggplot2)
library(tidyverse) # para an?lise e manipula??o de dados
library(dplyr)
library(AER)
library(stargazer)
library(spgwr)
library(rgdal)
library(spData)
library(spatstat)
library(spdep) # para esta?sticas espaciais

################ Shapefile ###############

# Abrir ShapeFile do Brasil

Shape_Brasil <- read_sf("Rodovia_sum.shp")

# Transformar para o EPSG padrão do Brasil, 4674.

Shape_Brasil <- Shape_Brasil %>% st_transform(crs = 4674)

############# Estimar Mínimos Quadrados Ordinários (MQO) ###############

# Rodovia
OLS1 <- lm(DESMATTOTA ~ RODOVKM2, data = Shape_Brasil)

summary(OLS1)

# Ferrovia

OLS2 <- lm(DESMATTOTA ~ RODOVKM2 + KM2FERROVI, data = Shape_Brasil)

summary(OLS2)

# Hidrovia

OLS3 <- lm(DESMATTOTA ~ RODOVKM2 + KM2FERROVI + RIOSKM2, data = 
Shape_Brasil)



summary(OLS3)
+
# Estrutura Econômica e Urbana + Composição Estrutural + Desigualdade

OLS4 <- lm(DESMATTOTA ~ RODOVKM2 + KM2FERROVI + RIOSKM2 + PIBPERCP + 
PIBPERCP2 + DENSIHAB + PIBAGRO + GINI2010,

data = Shape_Brasil)

summary(OLS4)

# Comércio Externo + Área Média Propriedades

OLS5 <- lm(DESMATTOTA ~ RODOVKM2 + KM2FERROVI + RIOSKM2 + PIBPERCP + 
PIBPERCP2 + DENSIHAB + PIBAGRO  + GINI2010 +  ABERTUCOME + AREAMED201,

data = Shape_Brasil)

summary(OLS5)

# AGROPECUÁRIA + QUALIDADE DO SOLO + TECNOLOGIA

OLS6 <- lm(DESMATTOTA ~ RODOVKM2 + KM2FERROVI + RIOSKM2 + PIBPERCP + 
PIBPERCP2 + DENSIHAB + PIBAGRO  + GINI2010 + ABERTUCOME + AREAMED201

+ PASTAGKM2 + PLANTADKM2 + INDSOLO + INDTEC, data = 
Shape_Brasil)

summary(OLS6)

# Geográficas

OLS7 <- lm(DESMATTOTA ~ RODOVKM2 + KM2FERROVI + RIOSKM2 + PIBPERCP + 
PIBPERCP2 + DENSIHAB + PIBAGRO  + GINI2010 + ABERTUCOME + AREAMED201

+ PASTAGKM2 + PLANTADKM2 + INDSOLO + INDTEC + ALTITUDE + 
AVG_PCP_NU + TEMPERATUR,

data = Shape_Brasil)

summary(OLS7)

# ÁREA PROTEGIDA + Direito de Propriedade + Acesso Crédito + Multas + CH

OLS8 <- lm(DESMATTOTA ~ RODOVKM2 + KM2FERROVI + RIOSKM2 + PIBPERCP + 
PIBPERCP2 + DENSIHAB + PIBAGRO  + GINI2010 + ABERTUCOME + AREAMED201

+ PASTAGKM2 + PLANTADKM2 + INDSOLO + INDTEC + ALTITUDE + 
AVG_PCP_NU + TEMPERATUR + CH2010 + DIREITOPRO + QTMULTAS20 + ACESSOCRED

+ APROTEGKM2, data = Shape_Brasil)

summary(OLS8)

# Erros Padrão Robusto



cov1 <- vcovHC(OLS1, type = "HC1")
cov2 <- vcovHC(OLS2, type = "HC1")
cov3 <- vcovHC(OLS3, type = "HC1")
cov4 <- vcovHC(OLS4, type = "HC1")
cov5 <- vcovHC(OLS5, type = "HC1")
cov6 <- vcovHC(OLS6, type = "HC1")
cov7 <- vcovHC(OLS7, type = "HC1")
cov8 <- vcovHC(OLS8, type = "HC1")

robust_se1    <- sqrt(diag(cov1))
robust_se2    <- sqrt(diag(cov2))
robust_se3    <- sqrt(diag(cov3))
robust_se4    <- sqrt(diag(cov4))
robust_se5    <- sqrt(diag(cov5))
robust_se6    <- sqrt(diag(cov6))
robust_se7    <- sqrt(diag(cov7))
robust_se8    <- sqrt(diag(cov8))

# Tabela

note <- c("*** Significant at 1\\%; ** Significant at 5\\%; * Significant 
at 10\\%. Robust Standard Erros")

stargazer(list(OLS3, OLS4, OLS5, OLS6, OLS7, OLS8), type = "latex", notes 
= note, notes.append = FALSE,

title = "Ordinary Least Squares", dep.var.labels = 
"Deforestation", style = "default",

column.labels = c("OLS", "OLS","OLS", "OLS", "OLS", "OLS"), 
keep.stat = c("n", "rsq", "adj.rsq","aic"),

digits =  4, out = "TabelaEndogeneidade.tex", no.space = TRUE,  
column.sep.width = "-1pt", se = list(robust_se3, robust_se4, robust_se5, 
robust_se6, robust_se7, robust_se8),

font.size = "tiny", align = TRUE, omit = 
c("DumPrecip","DumDirProp", "DumInsegPro", "DumMulta",

"DAcessoCredito2017")
,

covariate.labels = c("Roads", "Rail", "Rivers", "GDP", "GDP²", 
"Demographic Density", "Rural GDP", "GINI", "Openness to Trade", "Property 
Area", "Pasture", "Planted Area", "Soil", "Technology", "Altitude", 
"Precipitation","Temperature", "Human Capital", "Property Rights", 
"Environmental Fines", "Rural Credit", "Protected Areas")

)

############# TESTE DE ENDOGENEIDADE  ###################

# Rodovia
RES1 <- lm(resid(OLS1) ~ RODOVKM2, data = Shape_Brasil)



summary(RES1)

# Ferrovia

RES2 <- lm(resid(OLS2) ~ RODOVKM2 + KM2FERROVI, data = Shape_Brasil)

summary(RES2)

# Ferrovia

RES3 <- lm(resid(OLS3) ~ RODOVKM2 + KM2FERROVI + RIOSKM2, data = 
Shape_Brasil)

summary(RES3)

# Estrutura Econômica e Urbana + Composição Estrutural + Desigualdade

RES4 <- lm(resid(OLS4) ~ RODOVKM2 + KM2FERROVI + RIOSKM2 + PIBPERCP + 
PIBPERCP2 + DENSIHAB + PIBAGRO + GINI2010,

data = Shape_Brasil)

summary(RES4)

# Comércio Externo + Área Média Propriedades

RES5 <- lm(resid(OLS5) ~ RODOVKM2 + KM2FERROVI + RIOSKM2 + PIBPERCP + 
PIBPERCP2 + DENSIHAB + PIBAGRO  + GINI2010 +  ABERTUCOME + AREAMED201,

data = Shape_Brasil)

summary(RES5)

# AGROPECUÁRIA + QUALIDADE DO SOLO + TECNOLOGIA

RES6 <- lm(resid(OLS6) ~ RODOVKM2 + KM2FERROVI + RIOSKM2 + PIBPERCP + 
PIBPERCP2 + DENSIHAB + PIBAGRO  + GINI2010 + ABERTUCOME + AREAMED201

+ PASTAGKM2 + PLANTADKM2 + INDSOLO + INDTEC, data = 
Shape_Brasil)

summary(RES6)

# Geográficas

RES7 <- lm(resid(OLS7) ~ RODOVKM2 + KM2FERROVI + RIOSKM2 + PIBPERCP + 
PIBPERCP2 + DENSIHAB + PIBAGRO  + GINI2010 + ABERTUCOME + AREAMED201

+ PASTAGKM2 + PLANTADKM2 + INDSOLO + INDTEC + ALTITUDE + 
AVG_PCP_NU + TEMPERATUR,

data = Shape_Brasil)

summary(RES7)

# ÁREA PROTEGIDA + Direito de Propriedade + Acesso Crédito + Multas + CH



RES8 <- lm(resid(OLS8) ~ RODOVKM2 + KM2FERROVI + RIOSKM2 + PIBPERCP + 
PIBPERCP2 + DENSIHAB + PIBAGRO  + GINI2010 + ABERTUCOME + AREAMED201

+ PASTAGKM2 + PLANTADKM2 + INDSOLO + INDTEC + ALTITUDE + 
AVG_PCP_NU + TEMPERATUR + CH2010 + DIREITOPRO + QTMULTAS20 + ACESSOCRED

+ APROTEGKM2, data = Shape_Brasil)

summary(RES8)

# Erros Padrão Robusto

covres1 <- vcovHC(RES1, type = "HC1")
covres2 <- vcovHC(RES2, type = "HC1")
covres3 <- vcovHC(RES3, type = "HC1")
covres4 <- vcovHC(RES4, type = "HC1")
covres5 <- vcovHC(RES5, type = "HC1")
covres6 <- vcovHC(RES6, type = "HC1")
covres7 <- vcovHC(RES7, type = "HC1")
covres8 <- vcovHC(RES8, type = "HC1")

robust_seres1    <- sqrt(diag(covres1))
robust_seres2    <- sqrt(diag(covres2))
robust_seres3    <- sqrt(diag(covres3))
robust_seres4    <- sqrt(diag(covres4))
robust_seres5    <- sqrt(diag(covres5))
robust_seres6    <- sqrt(diag(covres6))
robust_seres7    <- sqrt(diag(covres7))
robust_seres8    <- sqrt(diag(covres8))

# Tabela

note <- c("*** Significant at 1\\%; ** Significant at 5\\%; * Significant 
at 10\\%. Robust Standard Erros")

stargazer(list(RES1,RES2, RES3, RES4, RES5, RES6, RES7, RES8), type = 
"latex", notes = note, notes.append = FALSE,

title = "Endogeneity Test", dep.var.labels = "Ordinary Least 
Squares Residuals", style = "default",

column.labels = c("Resid","Resid", "Resid", "Resid","Resid", 
"Resid", "Resid", "Resid"), keep.stat = c("n", "rsq", "adj.rsq","aic"),

digits =  4, out = "TabelaRES.tex", no.space = TRUE,  
column.sep.width = "-1pt", se = list(robust_seres1, robust_seres2, 
robust_seres3, robust_seres4, robust_seres5, robust_seres6, robust_seres7, 
robust_seres8),

font.size = "tiny", align = TRUE, omit = 
c("DumPrecip","DumDirProp", "DumInsegPro", "DumMulta",

"DAcessoCredito2017")
,

covariate.labels = c("Roads", "Rail", "Rivers", "GDP", "GDP²", 
"Demographic Density", "Rural GDP", "GINI", "Openness to Trade", "Property 
Area", "Pasture", "Planted Area", "Soil", "Technology", "Altitude", 



"Precipitation", "Temperature", "Human Capital", "Property Rights", 
"Environmental Fines", "Rural Credit", "Protected Areas")
)

######################### MATRIZES DE PESO ESPACIAL 
#######################

# Estatísticas Espaciais para o Desmatamento

#distância: k vizinhos mais próximos
vizinhanca_distancia3 <- Shape_Brasil %>%
as("Spatial") %>%
coordinates() %>%
knearneigh(3) %>%
knn2nb()

#distância: k vizinhos mais próximos
vizinhanca_distancia5 <- Shape_Brasil %>%
as("Spatial") %>%
coordinates() %>%
knearneigh(5) %>%
knn2nb()

#distância: k vizinhos mais próximos
vizinhanca_distancia7 <- Shape_Brasil %>%
as("Spatial") %>%
coordinates() %>%
knearneigh(7) %>%
knn2nb()

#distância: k vizinhos mais próximos
vizinhanca_distancia10 <- Shape_Brasil %>%
as("Spatial") %>%
coordinates() %>%
knearneigh(10) %>%
knn2nb()

#distância: k vizinhos mais próximos
vizinhanca_distancia15 <- Shape_Brasil %>%
as("Spatial") %>%
coordinates() %>%
knearneigh(15) %>%
knn2nb()



#distância: k vizinhos mais próximos
vizinhanca_distancia20 <- Shape_Brasil %>%
as("Spatial") %>%
coordinates() %>%
knearneigh(20) %>%
knn2nb()

vizinhanca_distancia3_pesos <- 
nb2listw(vizinhanca_distancia3,zero.policy=TRUE, style="W")
vizinhanca_distancia5_pesos <- 
nb2listw(vizinhanca_distancia5,zero.policy=TRUE, style="W")
vizinhanca_distancia7_pesos <- 
nb2listw(vizinhanca_distancia7,zero.policy=TRUE, style="W")
vizinhanca_distancia10_pesos <- 
nb2listw(vizinhanca_distancia10,zero.policy=TRUE, style="W")
vizinhanca_distancia15_pesos <- 
nb2listw(vizinhanca_distancia15,zero.policy=TRUE, style="W")
vizinhanca_distancia20_pesos <- 
nb2listw(vizinhanca_distancia20,zero.policy=TRUE, style="W")

# I de moran

Shape_Brasil %>% pull(DESMATTOTA) %>% 
moran.test(vizinhanca_distancia3_pesos)
Shape_Brasil %>% pull(DESMATTOTA) %>% 
moran.test(vizinhanca_distancia5_pesos)
Shape_Brasil %>% pull(DESMATTOTA) %>% 
moran.test(vizinhanca_distancia7_pesos)
Shape_Brasil %>% pull(DESMATTOTA) %>% 
moran.test(vizinhanca_distancia10_pesos)
Shape_Brasil %>% pull(DESMATTOTA) %>% 
moran.test(vizinhanca_distancia15_pesos)
Shape_Brasil %>% pull(DESMATTOTA) %>% 
moran.test(vizinhanca_distancia20_pesos)

###### TESTE RESÍDUOS OLS #######

Moran_OLS1 <- lm.morantest(OLS1, vizinhanca_distancia3_pesos)

Moran_OLS2 <- lm.morantest(OLS2, vizinhanca_distancia3_pesos)

Moran_OLS3 <- lm.morantest(OLS3, vizinhanca_distancia3_pesos)



Moran_OLS4 <- lm.morantest(OLS4, vizinhanca_distancia3_pesos)

Moran_OLS5 <- lm.morantest(OLS5, vizinhanca_distancia3_pesos)

Moran_OLS6 <- lm.morantest(OLS6, vizinhanca_distancia3_pesos)

Moran_OLS7 <- lm.morantest(OLS7, vizinhanca_distancia3_pesos)

M_OLS1 <- c(Model = "OLS(1)", Moran_OLS1$estimate, Moran_OLS1$p.value)

M_OLS2 <- c(Model = "OLS(2)", Moran_OLS2$estimate, Moran_OLS2$p.value)

M_OLS3 <- c(Model = "OLS(3)", Moran_OLS3$estimate, Moran_OLS3$p.value)

M_OLS4 <- c(Model = "OLS(4)", Moran_OLS4$estimate, Moran_OLS4$p.value)

M_OLS5 <- c(Model = "OLS(5)", Moran_OLS5$estimate, Moran_OLS5$p.value)

M_OLS6 <- c(Model = "OLS(6)", Moran_OLS6$estimate, Moran_OLS6$p.value)

M_OLS7 <- c(Model = "OLS(7)", Moran_OLS7$estimate, Moran_OLS7$p.value)

stargazer(M_OLS1)

note_moran <- c("*** Significant at 1\\%; ** Significant at 5\\%; * 
Significant at 10\\%")

stargazer(list(M_OLS1), type = "latex", notes = note_moran, notes.append = 
FALSE,

title = "Moran I Test", style = "default", digits =  4, out = 
"TabelaMoran.tex", no.space = TRUE,

column.sep.width = "5pt", font.size = "small", align = TRUE )

stargazer(list(M_OLS2), type = "latex", style = "default", digits =  4, 
no.space = TRUE,

column.sep.width = "5pt", font.size = "small", align = TRUE )

stargazer(list(M_OLS3), type = "latex", style = "default", digits =  4, 
no.space = TRUE,

column.sep.width = "5pt", font.size = "small", align = TRUE )

stargazer(list(M_OLS4), type = "latex", style = "default", digits =  4, 
no.space = TRUE,

column.sep.width = "5pt", font.size = "small", align = TRUE )

stargazer(list(M_OLS5), type = "latex", notes = note_moran, notes.append = 
FALSE,

title = "Moran I Test", style = "default", digits =  4, out = 
"TabelaMoran.tex", no.space = TRUE,



column.sep.width = "5pt", font.size = "small", align = TRUE )

stargazer(list(M_OLS6), type = "latex", style = "default", digits =  4, 
no.space = TRUE,

column.sep.width = "5pt", font.size = "small", align = TRUE )

stargazer(list(M_OLS7), type = "latex",style = "default", digits =  4, 
no.space = TRUE,

column.sep.width = "5pt", font.size = "small", align = TRUE )

################ Modelos Espaciais ####################

WDESMATTOTA <- lag.listw(vizinhanca_distancia3_pesos, 
Shape_Brasil$DESMATTOTA)
WRODOVKM2 <- lag.listw(vizinhanca_distancia3_pesos, Shape_Brasil$RODOVKM2)
WKM2FERROVI <- lag.listw(vizinhanca_distancia3_pesos, 
Shape_Brasil$KM2FERROVI)
WPIBPERCP <- lag.listw(vizinhanca_distancia3_pesos, Shape_Brasil$PIBPERCP)
WPIBPERCP2 <- lag.listw(vizinhanca_distancia3_pesos, 
Shape_Brasil$PIBPERCP2)
WDENSIHAB <- lag.listw(vizinhanca_distancia3_pesos, Shape_Brasil$DENSIHAB)
WPIBAGRO <- lag.listw(vizinhanca_distancia3_pesos, 
Shape_Brasil$DESMATTOTA)
WGINI2010 <- lag.listw(vizinhanca_distancia3_pesos, Shape_Brasil$PIBAGRO)
WABERTUCOME <- lag.listw(vizinhanca_distancia3_pesos, 
Shape_Brasil$ABERTUCOME)
WAREAMED201 <- lag.listw(vizinhanca_distancia3_pesos, 
Shape_Brasil$AREAMED201)
WPASTAGKM2 <- lag.listw(vizinhanca_distancia3_pesos, 
Shape_Brasil$PASTAGKM2)
WPLANTADKM2 <- lag.listw(vizinhanca_distancia3_pesos, 
Shape_Brasil$PLANTADKM2)
WINDSOLO <- lag.listw(vizinhanca_distancia3_pesos, Shape_Brasil$INDSOLO)
WINDTEC <- lag.listw(vizinhanca_distancia3_pesos, Shape_Brasil$INDTEC)
WALTITUDE <- lag.listw(vizinhanca_distancia3_pesos, Shape_Brasil$ALTITUDE)
WAVG_PCP_NU <- lag.listw(vizinhanca_distancia3_pesos, 
Shape_Brasil$AVG_PCP_NU)
WRIOSKM2 <- lag.listw(vizinhanca_distancia3_pesos, Shape_Brasil$RIOSKM2)
WTEMPERATUR  <- lag.listw(vizinhanca_distancia3_pesos, 
Shape_Brasil$TEMPERATUR)
WCH2010 <- lag.listw(vizinhanca_distancia3_pesos, Shape_Brasil$CH2010)
WDIREITOPRO <- lag.listw(vizinhanca_distancia3_pesos, 
Shape_Brasil$DIREITOPRO)
WQTMULTAS20 <- lag.listw(vizinhanca_distancia3_pesos, 
Shape_Brasil$QTMULTAS20)
WACESSOCRED <- lag.listw(vizinhanca_distancia3_pesos, 
Shape_Brasil$ACESSOCRED)
WAPROTEGKM2 <- lag.listw(vizinhanca_distancia3_pesos, 
Shape_Brasil$APROTEGKM2)
W2RODOVKM2 <- lag.listw(vizinhanca_distancia3_pesos, WRODOVKM2)



W <- lm(WDESMATTOTA ~ WPIBPERCP + WPIBPERCP2 + WDENSIHAB + WPIBAGRO  + 
WGINI2010 + WABERTUCOME + WAREAMED201

+ WPASTAGKM2 + WPLANTADKM2 + WINDSOLO + WINDTEC + 
WALTITUDE + WAVG_PCP_NU + WRIOSKM2 + WTEMPERATUR + WCH2010 + WDIREITOPRO + 
WQTMULTAS20 + WACESSOCRED

+ WAPROTEGKM2)

WDESMATTOTA <- predict(W)

Shape_Brasil <- mutate(Shape_Brasil, WRODOVKM2) %>% 
mutate(WDESMATTOTA) %>% mutate(WKM2FERROVI) %>% mutate(WRIOSKM2)

## Modelos

SLX <- lm(DESMATTOTA ~  RODOVKM2 + KM2FERROVI + RIOSKM2+  WRODOVKM2 + 
WKM2FERROVI + WRIOSKM2 +  PIBPERCP + PIBPERCP2 + DENSIHAB + PIBAGRO  + 
GINI2010 + ABERTUCOME + AREAMED201

+ PASTAGKM2 + PLANTADKM2 + INDSOLO + INDTEC + ALTITUDE + 
AVG_PCP_NU + RIOSKM2 + TEMPERATUR + CH2010 + DIREITOPRO + QTMULTAS20 + 
ACESSOCRED

+ APROTEGKM2, data=Shape_Brasil)

summary(SLX)

SAR <- lm(DESMATTOTA ~  RODOVKM2 + KM2FERROVI + RIOSKM2+ WDESMATTOTA + 
KM2FERROVI + PIBPERCP + PIBPERCP2 + DENSIHAB + PIBAGRO  + GINI2010 + 
ABERTUCOME + AREAMED201

+ PASTAGKM2 + PLANTADKM2 + INDSOLO + INDTEC + ALTITUDE + 
AVG_PCP_NU + TEMPERATUR + CH2010 + DIREITOPRO + QTMULTAS20 + ACESSOCRED

+ APROTEGKM2, data=Shape_Brasil)

summary(SAR)

SDM <- lm(DESMATTOTA ~  RODOVKM2 + KM2FERROVI + RIOSKM2+  WRODOVKM2 + 
WKM2FERROVI + WRIOSKM2 + WDESMATTOTA + PIBPERCP + PIBPERCP2 + DENSIHAB + 
PIBAGRO  + GINI2010 + ABERTUCOME + AREAMED201

+ PASTAGKM2 + PLANTADKM2 + INDSOLO + INDTEC + ALTITUDE + 
AVG_PCP_NU + TEMPERATUR + CH2010 + DIREITOPRO + QTMULTAS20 + ACESSOCRED

+ APROTEGKM2, data=Shape_Brasil)

summary(SDM)

# Interação

SAR_int <- lm(DESMATTOTA ~  RODOVKM2 + KM2FERROVI + RIOSKM2 + 
WDESMATTOTA*(RODOVKM2 + KM2FERROVI + RIOSKM2) + KM2FERROVI + PIBPERCP + 
PIBPERCP2 + DENSIHAB + PIBAGRO  + GINI2010 + ABERTUCOME + AREAMED201

+ PASTAGKM2 + PLANTADKM2 + INDSOLO + INDTEC + ALTITUDE + 
AVG_PCP_NU + TEMPERATUR + CH2010 + DIREITOPRO + QTMULTAS20 + ACESSOCRED



+ APROTEGKM2, data=Shape_Brasil)

summary(SAR_int)

SDM_int <- lm(DESMATTOTA ~  RODOVKM2 + KM2FERROVI + RIOSKM2+  WRODOVKM2 + 
WKM2FERROVI + WRIOSKM2 + WDESMATTOTA*(RODOVKM2 + KM2FERROVI + RIOSKM2) + 
PIBPERCP + PIBPERCP2 + DENSIHAB + PIBAGRO  + GINI2010 + ABERTUCOME + 
AREAMED201

+ PASTAGKM2 + PLANTADKM2 + INDSOLO + INDTEC + ALTITUDE + 
AVG_PCP_NU + TEMPERATUR + CH2010 + DIREITOPRO + QTMULTAS20 + ACESSOCRED

+ APROTEGKM2, data=Shape_Brasil)

summary(SDM_int)

# Resíduos

SLX_res <- lm(resid(SLX) ~  RODOVKM2 + KM2FERROVI + RIOSKM2+  WRODOVKM2 + 
WKM2FERROVI + WRIOSKM2 + PIBPERCP + PIBPERCP2 + DENSIHAB + PIBAGRO  + 
GINI2010 + ABERTUCOME + AREAMED201

+ PASTAGKM2 + PLANTADKM2 + INDSOLO + INDTEC + ALTITUDE + 
AVG_PCP_NU + TEMPERATUR + CH2010 + DIREITOPRO + QTMULTAS20 + ACESSOCRED

+ APROTEGKM2, data=Shape_Brasil)

SAR_res <- lm(resid(SAR) ~  RODOVKM2 + KM2FERROVI + RIOSKM2+  WRODOVKM2 + 
WKM2FERROVI + WRIOSKM2 + WDESMATTOTA + PIBPERCP + PIBPERCP2 + DENSIHAB + 
PIBAGRO  + GINI2010 + ABERTUCOME + AREAMED201

+ PASTAGKM2 + PLANTADKM2 + INDSOLO + INDTEC + ALTITUDE + 
AVG_PCP_NU + TEMPERATUR + CH2010 + DIREITOPRO + QTMULTAS20 + ACESSOCRED

+ APROTEGKM2, data=Shape_Brasil)

SDM_res <- lm(resid(SDM) ~  RODOVKM2 + KM2FERROVI + RIOSKM2+  WRODOVKM2 + 
WKM2FERROVI + WRIOSKM2 + WDESMATTOTA + PIBPERCP + PIBPERCP2 + DENSIHAB + 
PIBAGRO  + GINI2010 + ABERTUCOME + AREAMED201

+ PASTAGKM2 + PLANTADKM2 + INDSOLO + INDTEC + ALTITUDE + 
AVG_PCP_NU + TEMPERATUR + CH2010 + DIREITOPRO + QTMULTAS20 + ACESSOCRED

+ APROTEGKM2, data=Shape_Brasil)

# Erros Padrão Robusto Espacial

covrSLX <- vcovHC(SLX_res, type = "HC1")
covrSAR <- vcovHC(SAR_res, type = "HC1")
covrSDM <- vcovHC(SDM_res, type = "HC1")

robust_seSLX    <- sqrt(diag(covrSLX))
robust_seSAR    <- sqrt(diag(covrSAR))
robust_seSDM    <- sqrt(diag(covrSDM))



note <- c("*** Significant at 1\\%; ** Significant at 5\\%; * Significant 
at 10\\%. Robust Standard Errors")

stargazer(list(OLS7,SLX, SAR, SDM), type = "latex", notes = note, 
notes.append = FALSE,

title = "Spatial Models", dep.var.labels = "Deforestation", 
style = "default",

column.labels = c("OLS","SLX", "SAR", "SDM"), keep.stat = c("n", 
"aic","rsq", "adj.rsq"),

digits =  4, out = "TabelaSpatial.tex", no.space = TRUE,  
column.sep.width = "-1pt", se = list(robust_se7, 
robust_seSLX,robust_seSAR, robust_seSDM),

font.size = "small", align = TRUE, omit = c("PIBPERCP", 
"PIBPERCP2", "DENSIHAB", "PIBAGRO", "GINI2010", "ABERTUCOME", 
"AREAMED201", "PASTAGKM2", "PLANTADKM2", "INDSOLO", "INDTEC", "ALTITUDE", 
"AVG_PCP_NU", "TEMPERATUR", "CH2010", "DIREITOPRO", "QTMULTAS20", 
"ACESSOCRED","APROTEGKM2"),

covariate.labels = c("Roads", "Rail", "Rivers", "WRoads", 
"WRail", "WRivers", "WDeforestation")

)

# Critério de Informação de Akaike para verificar ajuste do modelo

AIC(OLS3)
AIC(OLS4)
AIC(OLS5)
AIC(OLS6)
AIC(OLS7)
AIC(OLS8)
AIC(SLX)
AIC(SAR)
AIC(SDM)

# I de Moran dos Resíduos

moran.test(residuals(OLS7), vizinhanca_distancia3_pesos)
moran.test(residuals(SLX), vizinhanca_distancia3_pesos)
moran.test(residuals(SAR), vizinhanca_distancia3_pesos)
moran.test(residuals(SDM), vizinhanca_distancia3_pesos)

######### Machine Learning ###########

### MQO Sem

amostra <- sample(1:nrow(Shape_Brasil), nrow(Shape_Brasil)*0.7, replace = 
FALSE)

dado_treinamento <- Shape_Brasil[amostra, ]
dados_teste <- Shape_Brasil[-amostra, ]



AI_Sem <- lm(DESMATTOTA ~ PIBPERCP + PIBPERCP2 + DENSIHAB + PIBAGRO  + 
GINI2010 + ABERTUCOME + AREAMED201

+ PASTAGKM2 + PLANTADKM2 + INDSOLO + INDTEC + ALTITUDE + 
AVG_PCP_NU + TEMPERATUR + CH2010 + DIREITOPRO + QTMULTAS20 + ACESSOCRED

+ APROTEGKM2, data = Shape_Brasil)

AI_Sem_output <- predict(AI_Sem, dados_teste)

AI_Sem_RMSE <- data.frame(predicted = AI_Sem_output, actual = 
dados_teste$DESMATTOTA,

SE = ((AI_Sem_output - 
dados_teste$DESMATTOTA)^2/length(AI_Sem_output)))

head(AI_Sem_RMSE)

sqrt(sum(AI_Sem_RMSE$SE, na.rm = TRUE))

### MQO Com

amostra <- sample(1:nrow(Shape_Brasil), nrow(Shape_Brasil)*0.7, replace = 
FALSE)

dado_treinamento <- Shape_Brasil[amostra, ]
dados_teste <- Shape_Brasil[-amostra, ]

AI_Com <- lm(DESMATTOTA ~ RODOVKM2 + KM2FERROVI + RIOSKM2 + PIBPERCP + 
PIBPERCP2 + DENSIHAB + PIBAGRO  + GINI2010 + ABERTUCOME + AREAMED201

+ PASTAGKM2 + PLANTADKM2 + INDSOLO + INDTEC + ALTITUDE + 
AVG_PCP_NU + TEMPERATUR + CH2010 + DIREITOPRO + QTMULTAS20 + ACESSOCRED

+ APROTEGKM2, data = Shape_Brasil)

AI_Com_output <- predict(AI_Com, dados_teste)

AI_Com_RMSE <- data.frame(predicted = AI_Com_output, actual = 
dados_teste$DESMATTOTA,

SE = ((AI_Com_output - 
dados_teste$DESMATTOTA)^2/length(AI_Com_output)))

head(AI_Com_RMSE)

sqrt(sum(AI_Com_RMSE$SE, na.rm = TRUE))

### SLX Com

amostra <- sample(1:nrow(Shape_Brasil), nrow(Shape_Brasil)*0.7, replace = 
FALSE)

dado_treinamento <- Shape_Brasil[amostra, ]



dados_teste <- Shape_Brasil[-amostra, ]

AI_ComSLX <- lm(DESMATTOTA ~  RODOVKM2 + KM2FERROVI + RIOSKM2+  WRODOVKM2 
+ WKM2FERROVI + WRIOSKM2 +  PIBPERCP + PIBPERCP2 + DENSIHAB + PIBAGRO  + 
GINI2010 + ABERTUCOME + AREAMED201

+ PASTAGKM2 + PLANTADKM2 + INDSOLO + INDTEC + ALTITUDE + 
AVG_PCP_NU + RIOSKM2 + TEMPERATUR + CH2010 + DIREITOPRO + QTMULTAS20 + 
ACESSOCRED

+ APROTEGKM2, data = Shape_Brasil)

AI_ComSLX_output <- predict(AI_ComSLX, dados_teste)

AI_ComSLX_RMSE <- data.frame(predicted = AI_ComSLX_output, actual = 
dados_teste$DESMATTOTA,

SE = ((AI_ComSLX_output - 
dados_teste$DESMATTOTA)^2/length(AI_ComSLX_output)))

head(AI_ComSLX_RMSE)

sqrt(sum(AI_ComSLX_RMSE$SE, na.rm = TRUE))

### SAR Com

amostra <- sample(1:nrow(Shape_Brasil), nrow(Shape_Brasil)*0.7, replace = 
FALSE)

dado_treinamento <- Shape_Brasil[amostra, ]
dados_teste <- Shape_Brasil[-amostra, ]

AI_ComSar <- lm(DESMATTOTA ~  RODOVKM2 + KM2FERROVI + RIOSKM2+ WDESMATTOTA 
+ KM2FERROVI + PIBPERCP + PIBPERCP2 + DENSIHAB + PIBAGRO  + GINI2010 + 
ABERTUCOME + AREAMED201

+ PASTAGKM2 + PLANTADKM2 + INDSOLO + INDTEC + ALTITUDE + 
AVG_PCP_NU + TEMPERATUR + CH2010 + DIREITOPRO + QTMULTAS20 + ACESSOCRED

+ APROTEGKM2, data = Shape_Brasil)

AI_ComSar_output <- predict(AI_ComSar, dados_teste)

AI_ComSar_RMSE <- data.frame(predicted = AI_ComSar_output, actual = 
dados_teste$DESMATTOTA,

SE = ((AI_ComSar_output - 
dados_teste$DESMATTOTA)^2/length(AI_ComSar_output)))

head(AI_ComSar_RMSE)

sqrt(sum(AI_ComSar_RMSE$SE, na.rm = TRUE))

### SDM Com

amostra <- sample(1:nrow(Shape_Brasil), nrow(Shape_Brasil)*0.7, replace = 
FALSE)



dado_treinamento <- Shape_Brasil[amostra, ]
dados_teste <- Shape_Brasil[-amostra, ]

AI_ComSDM <- lm(DESMATTOTA ~  RODOVKM2 + KM2FERROVI + RIOSKM2+  WRODOVKM2 
+ WKM2FERROVI + WRIOSKM2 + WDESMATTOTA + RODOVKM2 + KM2FERROVI + RIOSKM2 + 
PIBPERCP + PIBPERCP2 + DENSIHAB + PIBAGRO  + GINI2010 + ABERTUCOME + 
AREAMED201

+ PASTAGKM2 + PLANTADKM2 + INDSOLO + INDTEC + ALTITUDE + 
AVG_PCP_NU + TEMPERATUR + CH2010 + DIREITOPRO + QTMULTAS20 + ACESSOCRED

+ APROTEGKM2, data = Shape_Brasil)

AI_ComSDM_output <- predict(AI_ComSDM, dados_teste)

AI_ComSDM_RMSE <- data.frame(predicted = AI_ComSDM_output, actual = 
dados_teste$DESMATTOTA,

SE = ((AI_ComSDM_output - 
dados_teste$DESMATTOTA)^2/length(AI_ComSDM_output)))

head(AI_ComSDM_RMSE)

sqrt(sum(AI_ComSDM_RMSE$SE, na.rm = TRUE))

#### Cross - Validation

## MQO Sem

Shape_Brasil <- data.frame(Shape_Brasil, na.rm = TRUE)

is.na(Shape_Brasil)

Base_shuffled <- Shape_Brasil[sample(nrow(Shape_Brasil)), ]
folds <- cut(seq(1, nrow(Shape_Brasil)), breaks = 10, labels = FALSE)

errors <- c(0)

for (i in 1:10) {

fold.indexes <- which (folds == i, arr.ind = TRUE)

test.data <- Shape_Brasil[fold.indexes, ]
training.data <- Shape_Brasil[-fold.indexes, ]

train.linear <- lm(DESMATTOTA ~ PIBPERCP + PIBPERCP2 + DENSIHAB + 
PIBAGRO  + GINI2010 + ABERTUCOME + AREAMED201

+ PASTAGKM2 + PLANTADKM2 + INDSOLO + INDTEC + 
ALTITUDE + AVG_PCP_NU + TEMPERATUR + CH2010 + DIREITOPRO + QTMULTAS20 + 
ACESSOCRED



+ APROTEGKM2, data = na.pass(training.data))
train.output <- predict(train.linear, test.data)
errors <- c(errors, sqrt(sum(((train.output - 

test.data$DESMATTOTA)^2/length(train.output)), na.rm = TRUE)))
}

errors[2:11]

mean(errors[2:11])

## MQO Com

Shape_Brasil <- data.frame(Shape_Brasil, na.rm = TRUE)

is.na(Shape_Brasil)

Base_shuffled <- Shape_Brasil[sample(nrow(Shape_Brasil)), ]
folds <- cut(seq(1, nrow(Shape_Brasil)), breaks = 10, labels = FALSE)

errors <- c(0)

for (i in 1:10) {

fold.indexes <- which (folds == i, arr.ind = TRUE)

test.data <- Shape_Brasil[fold.indexes, ]
training.data <- Shape_Brasil[-fold.indexes, ]

train.linear <- lm(DESMATTOTA ~ RODOVKM2 + KM2FERROVI + RIOSKM2 + 
PIBPERCP + PIBPERCP2 + DENSIHAB + PIBAGRO  + GINI2010 + ABERTUCOME + 
AREAMED201

+ PASTAGKM2 + PLANTADKM2 + INDSOLO + INDTEC + 
ALTITUDE + AVG_PCP_NU + TEMPERATUR + CH2010 + DIREITOPRO + QTMULTAS20 + 
ACESSOCRED

+ APROTEGKM2, data = na.pass(training.data))
train.output <- predict(train.linear, test.data)
errors <- c(errors, sqrt(sum(((train.output - 

test.data$DESMATTOTA)^2/length(train.output)), na.rm = TRUE)))
}

errors[2:11]

mean(errors[2:11])

## SLX

Base_shuffled <- Shape_Brasil[sample(nrow(Shape_Brasil)), ]
folds <- cut(seq(1, nrow(Shape_Brasil)), breaks = 10, labels = FALSE)



errors <- c(0)

for (i in 1:10) {

fold.indexes <- which (folds == i, arr.ind = TRUE)

test.data <- Shape_Brasil[fold.indexes, ]
training.data <- Shape_Brasil[-fold.indexes, ]

train.linear <- lm(DESMATTOTA ~  RODOVKM2 + KM2FERROVI + RIOSKM2+  
WRODOVKM2 + WKM2FERROVI + WRIOSKM2 +  PIBPERCP + PIBPERCP2 + DENSIHAB + 
PIBAGRO  + GINI2010 + ABERTUCOME + AREAMED201

+ PASTAGKM2 + PLANTADKM2 + INDSOLO + INDTEC + 
ALTITUDE + AVG_PCP_NU + RIOSKM2 + TEMPERATUR + CH2010 + DIREITOPRO + 
QTMULTAS20 + ACESSOCRED

+ APROTEGKM2, data = na.pass(training.data))
train.output <- predict(train.linear, test.data)
errors <- c(errors, sqrt(sum(((train.output - 

test.data$DESMATTOTA)^2/length(train.output)), na.rm = TRUE)))
}

errors[2:11]

mean(errors[2:11])

## SAR

Base_shuffled <- Shape_Brasil[sample(nrow(Shape_Brasil)), ]
folds <- cut(seq(1, nrow(Shape_Brasil)), breaks = 10, labels = FALSE)

errors <- c(0)

for (i in 1:10) {

fold.indexes <- which (folds == i, arr.ind = TRUE)

test.data <- Shape_Brasil[fold.indexes, ]
training.data <- Shape_Brasil[-fold.indexes, ]

train.linear <- lm(DESMATTOTA ~  RODOVKM2 + KM2FERROVI + RIOSKM2+ 
WDESMATTOTA + KM2FERROVI + PIBPERCP + PIBPERCP2 + DENSIHAB + PIBAGRO  + 
GINI2010 + ABERTUCOME + AREAMED201

+ PASTAGKM2 + PLANTADKM2 + INDSOLO + INDTEC + 
ALTITUDE + AVG_PCP_NU + TEMPERATUR + CH2010 + DIREITOPRO + QTMULTAS20 + 
ACESSOCRED

+ APROTEGKM2, data = na.pass(training.data))
train.output <- predict(train.linear, test.data)
errors <- c(errors, sqrt(sum(((train.output - 

test.data$DESMATTOTA)^2/length(train.output)), na.rm = TRUE)))
}



errors[2:11]

mean(errors[2:11])

## SDM

Base_shuffled <- Shape_Brasil[sample(nrow(Shape_Brasil)), ]
folds <- cut(seq(1, nrow(Shape_Brasil)), breaks = 10, labels = FALSE)

errors <- c(0)

for (i in 1:10) {

fold.indexes <- which (folds == i, arr.ind = TRUE)

test.data <- Shape_Brasil[fold.indexes, ]
training.data <- Shape_Brasil[-fold.indexes, ]

train.linear <- lm(DESMATTOTA ~  RODOVKM2 + KM2FERROVI + RIOSKM2+  
WRODOVKM2 + WKM2FERROVI + WRIOSKM2 + WDESMATTOTA + PIBPERCP + PIBPERCP2 + 
DENSIHAB + PIBAGRO  + GINI2010 + ABERTUCOME + AREAMED201

+ PASTAGKM2 + PLANTADKM2 + INDSOLO + INDTEC + 
ALTITUDE + AVG_PCP_NU + TEMPERATUR + CH2010 + DIREITOPRO + QTMULTAS20 + 
ACESSOCRED

+ APROTEGKM2, data = na.pass(training.data))
train.output <- predict(train.linear, test.data)
errors <- c(errors, sqrt(sum(((train.output - 

test.data$DESMATTOTA)^2/length(train.output)), na.rm = TRUE)))
}

errors[2:11]

mean(errors[2:11])
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