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1 OVERVIEW OF CLASSIFICATION METHOD

The production of Collection 5 for the Pampa biome, with antarad use and land
cover maps (LULC) for the period of 12889, followed a sequence of steps, similar to
those used in the previous Collection 4.Figure ). However, some important
improvements were added up along the process, particularly, the tragangples scheme
and some post classification filters. Furthermore, the geographical official limits of the
biome were updated (IBGE 2019), resulting in a larger extension. In Collection 5 the mapped
area totaled 193,916 kiwhile in previous collectionsié total area was 177,550 Km

2 GEOGRAPHICAL UNITS OF CLASSIFICATION

Since the first collection, the adopted spatial unit for data processing followed the
World International Chart to the Millionth, at the 1:250,000 scale level, hereafter called
W O K |- ANdiakof2® charts were used to cover the biome. Each chart sets the geographical
limits to build up the temporal and spatial Landsat mosaics, to collect training samples and
to proceed with digital classification procedures. The final map of the Pangpaebwas
generated merging these 23 units.

As in Collection 4, the Collection 5 used the same charts approach to build up and
manage the Landsat mosaics. For the years 2988 the same mosaics were used with
the addition of new ones for 2019. Once thailis of the biome were modified (IBGE, 2019)
to Collection 5 it was necessary to merge four additional sheets, totaling 27 charts to
completely cover the biome extension. Landsat mosaics for these additional charts were
generated for all the years betwedr®85 and 2019.

The classification procedure, although, was based on geographical units,
corresponding to seven homogeneous regions. These regions are an adaptation of the
former nine ecological systems proposed by Haseeack (2010) for the BraziliaRampa
biome, using vegetation, relief and soils datggre 3. The 27 mosaics were then merged
to build up seven ones, corresponding to geographical regions.

The use of regions instead of charts as operational units for classification improved
the finalresults, increasing mapping accuracy and avoiding the abrupt transitions between
charts, observed in previous collections.
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Figurel Classification steps to produce Collecttoim the Pampa biome.



Figure 2 Geographical units of classification in the Pampa biome: thestzets of the World
International Chart to the Millionth (1:25000) used intollection 5 (white lines) and the seven
regions (yellow lines).

3 LANDSAT IMAGE MOSAICS

3.1 Definition of the temporal period

The selection of the best period of the year for image classification was defined to
minimize confusion between natural and cultivated vegetatidne to phenological
changes, while trying to maximize the coverage by useful Landsat images after cloud
removing/masking. Unlike most of the other Brazilian biomes, the climate of the Pampa
biome does not have a defined dry season, being the seasonatigarof temperature the
main factor determining the physiological behavior of vegetation throughout the year.

Forest, although classified mostly as Seasonal Deciduous Forest and, to a lesser
extent as SemDeciduous, expresses minor deciduousn&sgy asmall fraction of species
in the tree communitiesoseleaves during wintethusPampa forests are expected to show
less variation in spectral response over the year than other types of vegetation cover.

On the other hand, herbaceous vegetation typologies in terrestrial environments
tend to present a characteristic seasonal pattefigure 3presents a schematic diagram of
the seasonal behavior of grasslands and the most significant summer crops in tipa Pam
biome, markedly rice and soybean. During autumn, the photosynthetic production of
herbaceous vegetation begins to decline, reaching its lowest point in winter, when a
significant portion of the leaf biomass reaches a senescent stage. From late widteaidy



spring on, annual species germinate and perennial species begin to regrow, shooting new
leaves and increasing progressively the photosynthetically active biomass, which will reach
its peak in the summer.

Grasslands

Soybean/rice

Figure3 Scheme of phenological patterns of native grasslands, and soybean/rice crops in the Pampa
biome. The yaxis corresponds to photosynthetic biomass production with merely illustrative values.

Rice and soybean are summer crops. During late winter and epripg, soil
preparation takes place, which can result, giving the different agronomic management
techniques, in exposed soil (conventional planting), dried vegetatioril{age) due to
herbicide application, or flooded in the case of rice plantingubhsareas it is also usual to
sow winter pastures, for providing soil cover and supplemental forage for the livestock.
Consequently, during winter there are patches with photosynthetically active herbaceous
vegetation in the landscape, contrasting with tsenescent native grasslands. Summer
planted pastures have less expression than winter pastures, and their peak of
photosynthetic activity coincides with that of the grassland vegetation during January and
February Figure 3.

The period of the year allowable to distinguish betweawtive vegetation, crops,
pastures with exotic species and forestry through remote sensing in the Pampa biome was
definedtakingthe known phenological patterns. It is expected that more contrastheill
found between these land cover typologies from September to November, when summer
crop areas are under preparation for planting, cultivated pastures are off their
photosynthetic peak, and native grasslands are in the beginning of regrowth and
developmaent of new leavesKigure 5.
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Figure4 Scheme of phenological patterns of winter and summer pasture in the Pampa biome. The
y-axis corresponds to photosynthetic biomass production with merely illustrative values.
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Figure5 Schematic phenological pattern of grasslands, summer crops and winter pastures in the
Pampa biome, indicating the temporal windawth the bestcontrast for the purpose of satellite
imagery classification.



3.2 Image selection

For the selection of Landsat scenes to build the mosaics of each chart for each year,
within the selected standard period Septemb¢ovember, a threshold of 90% of cloud
cover was applied (i.e., any available scene with up to 90% of cloud cover was dcepte
This limit was established based on a visual analysis, after many trials observing the results
of the cloud removing/masking algorithm. When needed, due to excessive cloud cover
and/or lack of data, the standard period was extended to encompass arlatgeber of
scenes in order to allow the generation of a mosaic without holes. Whenever possible, this
was made by including months in the beginning of the period, in the winter season.

In most cases, at least one additional month had to be includeddardop provide
enough images for the mosaiddble ), with an overall mean of 3.9 months. In some
specific cases, it was neededdignificantly extendhe temporal period, while in others it
was shortened. Extension was more frequent for years 1990 80d,2vith an average of
sixmonths, while shortening was noticeable for year 2012, when the acceptable period of
four charts had to be reduced to ortlwo months (April and May) due to the low quality of
the available Landsat 7 scenes.

According to the year and the quality of available images, a specific Landsat
collection was selected:
1985 to 2000 and 2003 to 2011: Landsat 5,

2001, 2002 and 2012: Landsat 7,
2013 to 2019: Landsat 8.

O« O«

O«

3.3 Final quality

Considering the 27 charts of the Panipame and the 35 years of Collection 5, 945
mosaics were produced, all with satisfactory quality. Eventually, small portions of some
individual mosaics remained with no data pixels, but always smaller than 5% of the chart.



Tablel Temporal range (number of months) for selection of Landsat scenes used for building the mosaics

of the 27charts of the Pampa biome for each year in the period 1:2889.
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4 CLASSIFICATION

4.1 Classification scheme

The digital classificatioof the Landsat mosaics for the Pampa biome included eight
land use and land cover (LULC) clas§ablé 3 from the complete MapBiomas Collection
5 legend. After the integration with the crossitting themes (Forest plantation, Soybean,
Other Temporary Cm Beach and Dune, Urban infrastructure, Beach and Dune, Mining),
the final map encompassed a total of eleven classes.

Table2 Land cover and land us#assesonsidered for digital classification of Landsat mosaics for
the Pampa biome in the MapBiomas Collectton

Legend class of Collectidn Numeric ID Color
1.1.1.Forest Formation 3 _
2.1.Wetland 11
2.2.Grassland Formation 12
2.4.Rocky Outcrop 29 _
3.3Mosaic of Agriculture and Pasture 21
4.4.0therNon vegetatedirea 25
5. Water 33 I
6. Non Observed 27

4.2 Feature space

The feature space used in the digital classification of the Pampa biome comprised a
subset of 65 variableg éble 3, taken from the complete feature space (107 variables) of
MapBiomas Collection Fhese variablemclude the original Landsat reflectance bands, as
well as spectral indexes, spectral mixture modeliggived variables (fractions), fractions
indexes, terain morphometry (slope), and a spatial texture measure. ddfenition of this
subset was established using a routine of variables selection embedded in Google Earth
Engine ¢mileRandomForeftvhich calculatethe incrementaimportance of each variable
when added up in the variables pool. Then, a threshold of 70% of accumulated importance
(close to the performance plateau) was set to select the best variables.



Table 3 Feature spacg65 best variablesgonsidered in the classification of the Pampa biome

Landsat image mosaics in the MapBiomas Colle&id®852019).

ID Variable Description Statistics Temporal range Script acronym Group
0 Evi 2 Enhanced Vegetation Index 2 amplitude mosaic months ‘amp_evi2' Spectral index
1 Gv Green vegetation fraction amplitude mosaic months ‘amp_gv' Spectral Mixture Modeling
2 Ndfi Normalized Difference Fraction Index amplitude mosaic months ‘amp_ndfi’ Spectral Mixture Modeling
3 Ndvi Normalized Differenc¥egetation Index amplitude mosaic months ‘amp_ndvi' Spectral index
4 Ndwi Normalized Difference Water Index  amplitude mosaic months ‘amp_ndwi' Water Index
5 Npv Non-photosynthetic vegetatioriraction amplitude mosaic months ‘amp_npv' SpectraMixture Modeling
6 Sefi Savanna Ecosystem Fraction Index  amplitude mosaic months ‘amp_sefi' Fraction index
7 Sall soil fraction amplitude mosaic months ‘amp_soil' Spectral Mixture Modeling
10 Bluedry Landsat band median year-first quartilevalues 'median_blue dry Landsat band
11 Bluewet Landsat band median year¢ fourth quartile 'median_blue wet Landsat band
15 Cloud Cloudfraction median mosaic months 'median _cloud Spectral Mixture Modeling
16 Evi2 Enhanced Vegetation Index 2 median mosaic months 'median_evi2' Spectral index
17 Evi2dry Enhanced Vegetation Index 2 median year-first quartilevalues 'median_evi2dry Spectral index
18 Evi 2wet Enhanced Vegetation Index 2 median zzﬁr:sfourth quartile 'median_evi2 wet' Spectral index
19 Fns 6030 b aKlFRSUO b & median mosaic months 'median_fns Fraction index
20 Fnsdry 66030 b &KIFIRSO b & median year-first quartilevalues  'median _fns_dry Fraction index
21 Fns wet 6630 b aKIRSO b 4 median zzﬁr:sfourth quartile 'median_fns_wet Fraction index
22  Gevi OYANXKINBSY b ™m0 median mosaic months 'median_gcvi Spectral index
24 Gevi wet OYANKINBSY b ™m0 median year-first quartilevalues 'median_gcvi_wet Spectral index
27 Greenwet Landsat band median year-first quartilevalues 'median_greenwet  Landsat band
31 Gvswet GV / (100 shade) median year-first quartilevalues 'median_gvswet Spectral Mixture Modeling
32 Hallcover O b NJA RN MTZ NED AN NI - 3 median mosaic months 'median_hallcovet Spectral index
0.079 + 5.22)
34  Ndfiwet Normalized Difference Fraction Index median year¢ fourth quartile 'median_ndfi_wet' Spectral Mixture Modeling
36  Ndvi NormalizedDifference Vegetation Inde: median mosaic months 'median_ndvi' Spectral index
37 Ndvidry Normalized Difference Vegetation Inde median year-first quartilevalues 'median_ndvi_dry' Spectral index
39  Ndwi Normalized Difference Water Index  median mosaic months ‘median_ndwi' Water Index
40 Ndwidry Normalized Difference Water Index = median year-first quartilevalues 'median_ndwidry' Water Index
41 Ndwiwet Normalized Difference Water Index = median yearc fourth quartile 'median_ndwi_wet' Water Index
43  Near Infrared Landsat band median year-first quartilevalues  'median_nir dry Landsat band




(NIRYdry

45 Npv Non-photosynthetic vegetatioriraction median mosaic months 'median_npV' Spectral Mixture Modeling
47  Pridry 0 6 f dr&en)iblue + green) median year-first quartilevalues  'median pri_dry Spectral index
48  Pri wet 60ftdzS b ANBSYOkK OO0 median year¢ fourth quartile 'median_pri_wet Spectral index
49 Red Landsat band median mosaic months 'median_red' Landsat band
50 Reddry Landsat band median year-first quartilevalues 'median_red dry Landsat band
51 Redwet Landsat band median yearc fourth quartile 'median_red wet Landsat band
52 Savi Soitadjusted Vegetation Index median mosaic months 'median_savi' Spectral index
53 Savidry Soitadjusted Vegetation Index median year-first quartilevalues 'median_savidry Spectral index
55 Sefi Savanna Ecosystem Fraction Index  median mosaic months 'median_sefi' Fraction index
56  Sefidry Savannd&cosystem Fraction Index median year-first quartilevalues 'median_sefidry' Fraction index
57  Sefiwet Savanna Ecosystem Fraction Index  median year¢ fourth quartile 'median_sefivet' Fraction index
63 Shortwave .. Landsat band median mosaic months 'median_swir2' Landsat band

Infrared (SWIR) 2 -

Shortwave
64 Infrared (SWIR) Z Landsat band median year-first quartilevalues  ‘median_swir2 dry Landsat band

dry

Shortwave
65 Infrared (SWIR) Z Landsat band median yearc fourth quartile 'median_swir2wet  Landsat band

wet
68 Wefidry 0 o. 10 b YL@ median year-first quartilevalues 'median_wefi_dry Fraction index

(soil + shade))
70 Bluemin Landsat band minimum mosaic months 'min_blue' Landsat band
71 Greenmin Landsat band minimum mosaic months 'min_green’ Landsat band
73 Redmin Landsat band minimum mosaic months 'min_red' Landsat band
74 ﬁ\?far:;vc?\(lgwmj) Landsat band minimum mosaic months 'min_swirl' Landsat band
75 ﬁ\?far:;vc?\(lgwm) 5 Landsat band minimum mosaic months 'min_swir2' Landsat band
76 Temperature Landsat band minimum mosaic months 'min_temp' Landsat band
77 Blue Landsat band Star?d?“d mosaic months 'stdDev blue' Landsat band
deviation
. standard . v A A s < . . .

79 Cloud Cloudfraction deviation mosaic months aUR5S@yYOTf :Spectral Mixture Modeling
82 Govi OYANKINBSY b standard mosaic months 'stdDev gevi Spectral index

deviation




OLNBRAMTZABD AViIA NIL & standard . , .
86 Hallcover 0.079 + 5.22) deviation mosaic months stdDev hallcovet Spectral index
. . . . standard . . . .
88 Ndvi Normalized Difference Vegetation Inde deviation mosaic months stdDev ndvi Spectral index
. . A A A, , . Standard . , N .
92 Pri 00fdzS b ANBSYUOLKODO deviation mosaic months stdDev pri Spectral index
93 Red Landsat band Sta’?df?“d mosaic months 'stdDev red' Landsat band
deviation
. - . standard . , ., .
94  Savi Soitadjusted Vegetation Index deviation mosaic months stdDev savi Spectral index
. . standard . , ., L
95 Sefi Savanna Ecosystem Fraction Index deviation mosaic months stdDev sfi Fraction index
97  Sail soil fraction star?da.\rd mosaic months 'stdDev_soll’ Spectral Mixture Modeling
deviation
Shortwave standard . , -
98 Infrared (SWIR) Landsat band deviation mosaic months stdDev swirl Landsaband
standard . ,
100 Temperature Landsat band deviation mosaic months stdDev_temp Landsat band
102 Slope Slope - Permanent 'slope’ Geomorphometric
105 Latitude Geographical coordinate - Permanent "latitude’ Geographic
106 Ndvi_3anos NormalizedDifference Vegetation Inde: amplitude mosaic months ‘amp_ndvi_3ano$ Spectral index




4.3 Classification algorithm, training samples and parameters

Digital classification was performed region by region, year by year, using the Random
Forest algorithm (Breiman, 2001) available in Google Earth Engine, running 100 iterations
(random forest trees).

Training samples for each region were defined following a strategy of using pixels for
which the LULC remained the same along the 34 yeafSobiéction 4.1, hereafter called
dadlroftsS alryYLitSaédd 'y RRAGAZ2YLFE aSd 2F YI ydz
used as complementary stable samples.

4.3.1 Stable samples from Collectiohl

The extraction of stable samples from the previous Collection 4.1 followed several
steps aiming to ensure their confidence for use as training areas. First, a threshold was
established for each class, specifying a minimum number of years in which ahuuél s
remained within that class to be eligible as a stable sample (class 3: 34 years, class 11: 30 y.,
class 12: 34 y., class 21: 34 y., class 22: 34 y., class 29: 24 y., class 33: 34 y.). Then, a layer of
pixels with a stable classification along the y&&ars of Collection 4.1 was generated after
FLILX @Ay 3 &adzOK GKNBPaK2ft RAX LINRPRdAzZOAY3I | aaidl of

In Collection 5 an additional step was added before the extraction of training samples.
The stable areas map from Collection 4.1 was masked for the sla@s@rasslands) and 21
(mosaic of agriculture and pasture). The mask was built using only the stable pixels of
grasslands and agriculture within the Pampa reference maps for the yeargl286@nack et
al., 2015), 2009 (Weber et al., 2016) and 2015 (Hwoimet al., 2018). Then the mask was
intersected with the stable areas map. All the matches between similar classes of the two
maps were considered as a validation of stable areas status for those classes and the
corresponding pixels kept in the stable asemap. All the unmatches were used to remove
pixels from the stable areas map, as an attempt to lower uncertainty.

The stable areas maps, after masking, was used to extract random training points. A
total of 2,000 points were randomly selected for eaclgiom and stratified among classes
according to specific proportions. These proportions were calculated considering the area of
each class, within the correspondent region, for the year 2000 in the Collection 4.1 map. An
additional rule was set to ensuremainimum size of 500 points per class. These points were
used to extract from the Landsat mosaics of each year the variables used in the classification.

4.3.2 Complementary samples

The need for adding complementary samples for each region and for specificsclasse
was evaluated after analysis of preliminary results of a classification for the year 2017. This
particular year was selected considering the availability of field reference data for five control
zones for each region throughout the biome. This set c#nezice data for the classes within
each region was used to perform accuracy analysis of the preliminary classification in each
region. Complementary polygon samples were drawn directly in the Google Earth Engine



Code Editor. In this step, the same concepstable samples was applied, using the false
color composites of the Landsat mosaics for all the 34 years during the polygon drawing
process. An additional set of 500 to 800 points was extracted from these polygons to
complement the training points usdd classification. The addition of extra polygons ceased
whenever better results in global accuracy for the year 2017 were achieved and kept stable.
Additionally the quality of each new classification version was evaluated for each region
through visual ispection and checking the mapped area in each class using data from the
collection 4.1 as a reference.

4.3.3 Final classification

Final classification was performed for all regions and years using the mergediskt of
stable samples and complementary samples. All years used the same set of samples and were
trained with the variables available and selected from the Landsatsais of the
correspondentyear.

5 POSTCLASSIFICATION

The results of the final classificatiorere improved through a sequence of filters, to
O2NNBOU YA A&&adnglaSLIRISNE = Od & a & & T spédiallyh gages & NNP N&
misclassification.

5.1 Gap fill filter
This filter implemented a holélling routine using information of previous years
replace pixels classified as Non Observed.

5.2 Spatial filter

The spatial filter uses a mask to change only those patches with pixels connected to
five or less pixels of the same class. These pixels were replaced by the most frequent value of
their correspndent eight neighbors.

5.3 Temporal filter

The temporal filter uses the information from the previous year and the year later to
identify and correct a pixel misclassification, considered as cases of invalid transitions.

The rules differ for the first year (1985), the last year (2019) and intermediate years.
The process starts looking at the three first years. Whenever a pixel in the year 1985 does not
belong to any native vegetation classes (3, 11, 12, 29) but is reggdtdldwed by them in
1986 and 1987, then it is corrected by the corresponding natural class. This procedure avoids
cases of false positives of regeneration. The next step focuses on the three last years.
Whenever a pixel in the year 2019 is not clasdiis 21 (Mosaic of Agriculture and Pasture
class) but is preceded by two years equal to 21, then it is corrected to the class 21, avoiding
again false positives of regeneration. The last step usegeafBmoving window to correct



intermediate years. Whener a pixel with the middle year is preceded and succeeded by the
same other class, it is replaced with this correspondent class. This procedure fixes very abrupt
transitions that are unlikely to happen. The filter is applied step by step respecting the
following sequence of classes: [33, 29, 22, 21, 11, 3, 12].

5.4 Frequency filter

Frequency filters were applied to use the temporal information available for each pixel
to correct cases of false positives.

The general logic of the frequency filter is to searfdn each pixel a specific
combination of classes throughout the 35 years producing a subset of pixels considered
eligible for correction. Then the filter detects and overwrites only those years where cases of
false positives are present using a fixed classe, that usually is the mode of classifications
detected along the temporal range. This type of filter should be used with parsimony to solve
very well delimited cases. Five different variations of the frequency filters were employed in
collection 5.

TKS FANBRG FNBIdzSyOe TFAEGSNI gl a | LILIX ASR
YIEGAGS @S3ASGlFGA2yEé3 AyOfdzRAYy3d 2yfeé aKATOaA
(33). It was usetb dealwith cases of false positives in wetlandscky aitcrops and other
non-vegetated areas. For wetlands within this context, all pixels classified as wetlands with a
frequency greater than 51%, were considered as wetlands along all the years. For rocky
outcrops, and nofvegetated areas, all pixels with &€uency greater than 90% for each one
of these classes were considered as such along all yHaesiesult of this frequency filter is
a classification with a more stable classification for these specific classes.

The second frequency filter was used totfie confusion in rice paddies, with water,
or wetlands, that are common at regions 5, 6, and 7. The first rule selects all pixels with shifts
among classes 11, 21, and 33 and sets all years to class 21 whenever the frequency of this
class is greater thaB3% along the 35 years. Rice paddies out of the cropping season show
temporary waters and development of aquatic vegetation, confusing agriculture with false
positives of water or wetlands during the classification.

The third frequency filter corrected ghconfusion in wetlands and water, with false
positives of forest which is common at regions 3, 5, 6, and 7. First, the rule selects all pixels
with shifts among classes 3, 11, and 33 and replaces only the values with class 3 to class 33 or
11, consideringhe class with frequency greater than 33% along the 35 years. The radiometric
response of dense aquatic vegetation is very close to that of forests inducing the classifier to
include false positives of this class in places without the minimal physiol@gicditions to
support trees.

The fourth frequency filter corrected false positives of nmyetated areas in
agriculture, forest, and grassland, which appeared at regions 1, 2, 3, 4 and 6, especially in the
first years of the temporal range. First, thee selects all pixels with shifts among classes 3,

12, 21, and 22, with a mandatory presence of class 22 greater than one year. Within this
subset, only those pixels of class 22 were shifted to the class with the highest frequency along



the 34 years (moel). This procedure solved the confusion of places with grasslands on shallow
soils or with agricultural soils temporarily exposed and incorrectly classified as permanently
non-vegetated areas in some years.

The fifth frequency filter corrected false pasis of water in shaded relief covered
with forest which appeared at region 1, particularly in the first half of the temporal range
(19852000). First, all eligible pixels were selected combining two rules: only pixels classified
as forest or water alonghe years, but keeping only those with a frequency of water lower
than 85% within the first 15 years. Then the pixels classified as 33 were shifted by the mode
(3 or 33) considering the complete range of years (188%59). This procedure fixed the false
postives of water by forest, ensuring at the same time that the true positives of water were
not affected.

5.5 Incident filter

To correct the classification of pixels considered with an excessive amount of changes
along the 35 years an incident filter wagplied. The procedure assumes that there are some
temporal variations in the classification that are not real, but artifacts arising from two main
sources.

The first one comes from small tilts in the acquisition of the original radiometric
information by the satellite sensors associated with issues of georeferencing precision. These
situations affect especially those pixels located along the border of two classes when
compared over successive years. The same pixel may be classified to each one gihbernei
classes according to the intensity of these unwanted effects. The rule to solve the problem
includes three steps: to select all pixels that shifted above a threshold of eight times among
classes over the 35 years (incident pixels), to select onlyl gragches of pixels with this
behavior (less than 6 incident connected pixels), and to replace the original variable
classification for all years by a unique class equivalent to the most frequent class observed at
each pixel (mode).

The second one derigdrom lands with an intense use by family farming. These places
show dynamic transformations within and between years. The greenness of rotational annual
crops is a frequent source of confusion with evergreen forest, increasing forest commission
errors. he rule applied to fix the problem also includes three steps: to select all pixels that
shifted above a threshold of 10 times among classes over the 35 years, to select only small
areas (patches greater than 6 and lower than 66 incident connected pit@Isgarch for
those incident pixels where the most frequent class observed is forest (class 3) or mosaic of
pasture and agriculture (class 21) and replace the original classification for all years by class
21.



5.6 Wetlandsmergindfilter

In Collection 5, the classification of the class wetlands (11) showed a great quantity of
confusion, particularly with false positives of forest. The use of temporal filters and frequency
filters were not enough to fix the problem and the final result u@ser than that achieved
in Collection 4.1. Considering the particular context of this class in the Pampa biome, where
the main remnants of wetlands are concentrated in some regions with large sized patches the
solution adopted was to merge data from thble areas map of Collection 4.1 (see the item
4.3.1). The first step was to build a mask of eligible pixels from Collection 5 selecting all the
pixels with at least one year classified as wetlands and adding all neighbours pixels within a
distance of thee pixels. The second step was to intersect these pixels with the pixels classified
as wetlands in the stable areas of Collection 4.1. All the matches were considered as reliable
information and imported to the Collection 5 as stable areas of class 11.

5.7 Integration with crosscutting themes

The maps resulting from the postassification filters for each of the 35 years (1985
2019) were integrated with the crossutting themes, through hierarchical rules of
prevalence. The output of this step is a finalseintegrated LULC maps for the Pampa biome
for the 35 years.

In the Pampa biome, the class 4@rassland formation intersects most of the cross
cutting class 15 Pasture. A small quantity of remaining pixels of the class Pasture that do
not intersectwith grasslands were remapped to class 41 (Other Temporary Crop). These
rules are specific for the Pampa biome where planted pastures are in most of the cases a
temporary winter land cover practice out of the crop season period.

The class 21 Mosaic of Agriculture and Pasture intersects most of the eocogtng
classes 39 Soybean and 410ther Temporary Crop. The remaining pixels of class 21 that do
not intersect were remapped to class 41, once most of the areas mappedsa2dlare used
for annual crops.

6 VALIDATION STRATEGIES

6.1 Use of reference maps

Overall, there have been few previous initiatives on LULC mapping the Pampa biome
with spatial and thematic detail compatible with the MapBiomas Project. There are available
bagcally three maps that depict the years 2002 (Hasenack et al., 2015), 2009 (Weber et al.,
2016) and 2015 (Hofmann et al., 2018) for the state of Rio Grande do Sul, which includes the
Pampa biome.

All of the mentioned maps were produced through visual iptetation of Landsat
imagery, therefore being vector polygon maps, aiming to ensure a level of spatial detail
compatible with cartographic scale 1:250,000. Their thematic richness, on the other hand,
comprises a number of categories of natural vegetatover and anthropic uses that is
larger than those of Collection 3 of the MapBiomas project. Thus, for validation purposes,



the three available vector maps were first rasterized with a spatial resolution of 30 meter,
fA1S GKS al L) A2 Y HiédQccordingia the MapBhoyhas MefedHuresti A

7, 8), and finally used as reference for an analysis of agreement with the digital classification
maps of the same years. Different from accuracy assessment based on sampling points, here
the whole surfaceof each MapBiomas map was compared with the reference map of the
corresponding year.

The overall agreement between the MapBiomas LULC maps and the reclassified
reference maps was 68.95% for the year 2002, 69.05% for 2009 and 69.95% for 2015.
Allocation dsagreement was the major component of disagreement (Pontius and Millones,
2011), reaching 21.15% in 2002, 19.86% in 2009 and 18.40% in 2015. This reflects in part the
different nature of both sets of maps: the reference maps are inherently more genetalize
RdzS (2 GKS Ylydz f LRteée3a2y RNIgAy3IAI gKAES (K
pixelbased, so that a single polygon delineating a unique class in the former can encompass
several pixels of different classes in the latter.

Average value fothe three years was 69.32% for overall agreement, 19.80% for
allocation disagreement and 10.88% of quantity disagreement. Summing overall agreement
and allocation disagreement gives an indicator of area agreement, which was above 88% in
all the three yearswith an average of 89.12%.
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Figure6 Reference map for the Pampa biome, year 2002 (Hasenack et al., 2015), reclassified to the legend of Collection 5 abthadvapigct.
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Figure7 Reference map for the Pampa biome, year 2009 (Weber et al., 2016), reclassified to the legend of Collection 5 of the Mapiéernha
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Figure8 Reference map for the Pampa biome, year 2015 (Hofmann et al., 2018), reclassified to the |e€@electibn 5 of the MapBiomas project.
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